Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE. a) Chứng minh AH=DE. b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra:AH=DE
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
=>AH cắt DE tại trung điểm của mỗi đường và AH=DE
=>OA=OE
b: AD*AB=AH^2
AE*AC=AH^2
Do đó: AD*AB=AE*AC
=>AD/AC=AE/AB
=>ΔADE đồng dạng với ΔACB
a: Xét tứ giác ADHE co
góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
b: ΔABC vuông tại A
mà AM là trung tuyến
nên AM=BM=CM
ADHE là hình chữ nhật
nên góc AEH=góc ADH=góc ABC
=>góc AEH+góc MAC=90 độ
=>DE vuông góc với AM
Cm:a) Xét tứ giác ADHE có \(\widehat{A}=\widehat{ADH}=\widehat{HEA}=90^0\)
=> ADHE là hình chữ nhật
đt DE cắt đt AH tại O
=> OA = OE
b) Ta có: OA = OE => t/giác AOE cân tại O => \(\widehat{OAE}=\widehat{OEA}\) hay \(\widehat{HAC}=\widehat{DEA}\)
Ta lại có: t/giác ABC vuông tại A => \(\widehat{B}+\widehat{C}=90^0\)
t/giác AHC vuông tại A => \(\widehat{HAC}+\widehat{C}=90^0\)
=> \(\widehat{B}=\widehat{HAC}\)
mà \(\widehat{HAC}=\widehat{DEA}\)
=> \(\widehat{ABC}=\widehat{AED}\)(đpcm)
c) Gọi K là giao điểm của AI và DE
Xét t/giác ABC vuông tại A có AI là đường trung tuyến (BI = IC)
=> AI = IB = IC = 1/2BC
=> t/giác AIC cân tại I
=> \(\widehat{IAC}=\widehat{C}\) hay \(\widehat{KAE}=\widehat{C}\)
Ta có: \(\widehat{B}+\widehat{C}=90^0\)
mà \(\widehat{B}=\widehat{KEA}\) (cmt); \(\widehat{C}=\widehat{KAE}\)(Cmt)
=> \(\widehat{KAE}+\widehat{KEA}=90^0\)
Xét t/giác AKE có \(\widehat{KAE}+\widehat{KEA}=90^0\) => \(\widehat{AKE}=90^0\)
=> AI \(\perp\)DE
a) Xét tứ giác ADHE
Ta có: góc A=900(gt)
góc ADH=900(gt)
góc EHD=900(gt)
=>tứ giác ADHE là hcn
=>AH=DE(đpcm)
câu a, dễ thấy tứ giác AEHD có 3 góc A=E=D=90 độ nên AEHD là hình chữ nhật, do đó AH=DE.
b.Xét tam giác BHD vuông tại D và có P là trung điểm BH do đso
\(\widehat{PDH}=\widehat{PHD}\)mà \(\widehat{PHD}=\widehat{QCE}\)( đồng vị)
và \(\widehat{QCE}=\widehat{QEC}\)
do đó ta có \(\widehat{PDH}=\widehat{QEC}\) mà HD//CE nên DP //QE . do đó DEPQ là hình thang
a) Vì HD vuông góc với AB
=> HDB = HDA = 90 độ
Mà BAC = 90 độ (gt)
=> BAC = BDH = 90 độ
Mà 2 góc này ở vị trí đồng vị
=> DH //AE
=> DHEA là hình thang
Mà HE vuông góc với AC
=> HEA = 90 độ
=> HEA = BAC = 90 độ
=> DHEA là hình thang cân
=> DE = AH ( hình thang cân hai đường chéo bằng nhau)
=> dpcm