Phân tích đa thức thành nhân tử
a) x^2+ 12x+35
b) x^2- x- 56
c) 5x^2- x-4
d) 4x^4+ 1
e) 4x^4+ 81
g) 64x^4+ y^4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x² + 6x + 8
= x² + 2x + 4x + 8
= (x² + 2x) + (4x + 8)
= x(x + 2) + 4(x + 8)
= (x + 2)(x + 4)
b) 3x² - 2(x - y)² - 3y²
= (3x² - 3y²) - 2(x - y)²
= 3(x² - y²) - 2(x - y)²
= 3(x + y)(x - y) - 2(x - y)²
= (x - y)[3(x + y) - 2(x - y)]
= (x - y)(3x + 3y - 2x + 2y)
= (x - y)(x + 5y)
c) 4x² - 9y² + 4x - 6y
= (4x² - 9y²) + (4x - 6y)
= (2x - 3y)(2x + 3y) + 2(2x - 3y)
= (2x - 3y)(2x + 3y + 2)
d) x(x + 1)² + x(x - 5) - 5(x + 1)²
= [x(x + 1)² - 5(x + 1)²] + x(x - 5)
= (x + 1)²(x - 5) + x(x - 5)
= (x - 5)[(x + 1)² + x]
= (x - 5)(x² + 2x + 1 + x)
= (x - 5)(x² + 3x + 1)
e) 2xy - x² + 3y² - 4y + 1
= -x² + 2xy - y² + 4y² - 4y + 1
= -(x² - 2xy + y²) + (4y² - 4y + 1)
= -(x - y)² + (2y - 1)²
= (2y - 1)² - (x - y)²
= (2y - 1 - x + y)(2y - 1 + x - y)
= (3y - x - 1)(x + y - 1)
f) 4x¹⁶ + 81
= (2x⁸)² + 2.2x⁸.9 + 9² - 2.2x⁸.9
= (2x⁸ + 9)² - 36x⁸
= (2x⁸ + 9) - (6x⁴)²
= (2x⁸ + 9 - 6x⁴)(2x⁸ + 9 + 6x⁴)
= (2x⁸ - 6x⁴ + 9)(2x⁸ + 6x⁴ + 9)
a Đề sai: )
b
\(a^3-a^2x-ay+xy\\ =a^2\left(a-x\right)-y\left(a-x\right)\\ =\left(a-x\right)\left(a^2-y\right)\)
c
\(4x^2-y^2+4x+1\\ =\left(2x\right)^2+2.2x.1+1-y^2\\ =\left(2x+1\right)^2-y^2\\ =\left(2x+1-y\right)\left(2x+1+y\right)\)
d
\(x^4+2x^3+x^2\\ =x^4+x^3+x^3+x^2\\ =x^3\left(x+1\right)+x^2\left(x+1\right)\\ =\left(x^3+x^2\right)\left(x+1\right)\)
e
\(5x^2-10xy+5y^2-5z^2\\ =5\left(x^2-2xy+y^2-z^2\right)\\ =5\left[\left(x-y\right)^2-z^2\right]\\ =5\left(x-y-z\right)\left(x-y+z\right)\)
c: =(2x+1)^2-y^2
=(2x+1+y)(2x+1-y)
d: =x^2(x^2+2x+1)
=x^2(x+1)^2
e: =5(x^2-2xy+y^2-z^2)
=5[(x-y)^2-z^2]
=5(x-y-z)(x-y+z)
a) `x^4+2x^3-4x-4`
`=(x^4-4)+(2x^3-4x)`
`=(x^2-2)(x^2+2)+2x(x^2-2)`
`=(x^2-2)(x^2+2+2x)`
b) `x^3-4x^2+12x-27`
`=(x^3-27)-(4x^2-12x)`
`=(x-3)(x^2+3x+9)-4x(x-3)`
`=(x-3)(x^2+3x+9-4x)`
`=(x-3)(x^2-x+9)`
c) `xy-4y-5x+20`
`=y(x-4)-5(x-4)`
`=(y-5)(x-4)`
a) Ta có: \(x^4+2x^3-4x-4\)
\(=\left(x^4-4\right)+2x^3-4x\)
\(=\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
b) Ta có: \(x^3-4x^2+12x-27\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\cdot\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
c) Ta có: \(xy-4y-5x+20\)
\(=y\left(x-4\right)-5\left(x-4\right)\)
\(=\left(x-4\right)\left(y-5\right)\)
a) \(8x^3+27=\left(2x+3\right)\left(4x^2-6x+9\right)\)
b) \(4x^2-4x+1-y^2=\left(2x-1\right)^2-y^2=\left(2x-1-y\right)\left(2x-1+y\right)\)
c) \(x^4-2x^3+x^2-2x=x^3\left(x-2\right)+x\left(x-2\right)=x\left(x-2\right)\left(x^2-1\right)=x\left(x-2\right)\left(x-1\right)\left(x+1\right)\)
d) \(x^2-4y^2+2x+4y=\left(x-2y\right)\left(x+2y\right)+2\left(x+2y\right)=\left(x+2y\right)\left(x-2y+2\right)\)
a: =(6x)^2-(3x-2)^2
=(6x-3x+2)(6x+3x-2)
=(9x-2)(3x+2)
d: \(=\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\)
\(=4x\cdot\left[x^2+2x+1+x^2-2x+1\right]\)
=8x(x^2+1)
e: =(4x)^2-2*4x*3y+(3y)^2
=(4x-3y)^2
f: \(=-\left(\dfrac{1}{4}x^4-2\cdot\dfrac{1}{2}x^2\cdot2y^3+4y^6\right)\)
\(=-\left(\dfrac{1}{2}x^2-2y^3\right)^2\)
g: =(4x)^3+1^3
=(4x+1)(16x^2-4x+1)
k: =x^3(27x^3-8)
=x^3(3x-2)(9x^2+6x+4)
l: =(x^3-y^3)(x^3+y^3)
=(x-y)(x+y)(x^2-xy+y^2)(x^2+xy+y^2)
a) \(3xy-6xy^2=3xy\left(1-2y\right)\)
b) \(3x^3+6x^2+3x=3x\left(x^2+2x+1\right)=3x\left(x+1\right)^2\)
c) \(x^3-x^2+2\)
d) \(x^2+4x+4-y^2=\left(x^2+4x+4\right)-y^2=\left(x+2\right)^2-y^2=\left(x-y+2\right)\left(x+y+2\right)\)
e) \(x^3+4x^2+4x=x\left(x^2+4x+4\right)=x\left(x+2\right)^2\)
f) \(x^2+2x+1-9y^2=\left(x+1\right)^2-\left(3y\right)^2=\left(x-3y+1\right)\left(x+3y+1\right)\)
g) \(6x^2-12x=6x\left(x-2\right)\)
h) \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)
i) \(x^2-2xy+y^2-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)
a) \(x^2+12x+35\)
\(=x^2+5x+7x+35\)
\(=\left(x^2+5x\right)+\left(7x+35\right)\)
\(=x\left(x+5\right)+7\left(x+5\right)\)
\(=\left(x+5\right)\left(x+7\right)\)
b)\(x^2-x-56\)
\(=x^2+7x-8x-56\)
\(=\left(x^2+7x\right)-\left(8x+56\right)\)
\(=x\left(x+7\right)-8\left(x+7\right)\)
\(=\left(x+7\right)\left(x-8\right)\)
c)\(5x^2-x-4\)
\(=5x^2-5x+4x-4\)
\(=\left(5x^2-5x\right)+\left(4x-4\right)\)
\(=5x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(5x+4\right)\)
TL:
a)\(x^2+5x+7x+35\)
=\(x\left(x+5\right)+7\left(x+5\right)\)
=\(\left(x+7\right)\left(x+5\right)\)
b) \(x^2-x-56\)
=\(x^2+7x-8x-56\)
=\(x\left(x+7\right)-8\left(x+7\right)\)
=\(\left(x-8\right)\left(x+7\right)\)
d)\(4x^4+1=\left(2x^2\right)^2+4x^2+1-4x^2\)
=\(\left(2x^2+1\right)^2-4x^2\)
=\(\left(2x^2+1+4x\right)\left(2x^2+1-4x\right)\)
.......................(tự lm)
hc tốt