Trong không gianOxyz, cho mặt cầu (S): x2+y2+(z+1)2 =5. Có tất cả bao nhiêuđiểm A(a;b;c), (với a,b,c là các số nguyên) thuộc mặt phẳng (Oxy) sao cho có ít nhất hai tiếp tuyến của (S) đi qua A và hai tiếp tuyến đó vuông góc với nhau?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Ta có: S : x - 1 2 + y - 1 2 + z 2 = 1 . Do đó (S) có tâm I(1;1;0) và bán kính R = 1.
Dễ kiểm tra A 1 ; 0 ; 0 ∈ S . Do đó mặt phẳng (P) tiếp xúc với mặt cầu (S) tại điểm A sẽ nhận 1 vectơ pháp tuyến là I A → 0 ; - 1 ; 0 . Phương trình của mặt phẳng P : y = 0 .
Do B ∈ P nên có duy nhất một mặt phẳng thỏa mãn là P : y = 0 .
Chọn A
Mặt phẳng (P) chứa đường tròn (C) (giao của 2 mặt cầu đã cho) có phương trình là: 6x + 3y + 2z = 0
Mặt phẳng (P) có phương trình là:
Do đó (P) // (ABC). Mặt cầu (S) tiếp xúc với cả ba đường thẳng AB, BC, CA sẽ giao với mặt phẳng (ABC) theo một đường tròn tiếp xúc với ba đường thẳng AB, BC, CA.
Trên mặt phẳng (ABC) có 4 đường tròn tiếp xúc với ba đường thẳng AB, BC, CA đó là đường tròn nội tiếp tam giác ABC và ba đường tròn bàng tiếp các góc A, B, C. Do đó có 4 mặt cầu có tâm nằm trên (P) và tiếp xúc với cả ba đường thẳng AB, BC, CA. Tâm của 4 mặt cầu là hình chiếu của tâm 4 đường tròn tiếp xúc với ba đường thẳng AB, BC, CA lên mặt phẳng (P).
Chọn C
Gọi (P) là mặt phẳng thỏa mãn bài toán.
Ta có A (1; 0; 0) ∈ (S) => nếu tồn tại (P) thì (P) tiếp xúc với (S) tại A.
Ta thấy A (0; 0 ; 2) ∈ (P) duy nhất một mặt phẳng thỏa mãn bài toán.
Ghi chú: Bài toán này thường thường thì sẽ có hai mặt phẳng thỏa mãn, nhưng với số liệu của bài này thì chỉ có một mặt phẳng thỏa mãn bài toán.