K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: AH=căn 4*9=6cm

AB=căn 4*13=2căn 13(cm)

AC=căn 9*13=3*căn 13(cm)

2: Xét tứ giác ADHE có 

góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

=>DE=AH

=>DE^2=HB*HC

3: ΔAHB vuông tại H có HD vuông góc AB

nên AD*AB=AH^2

ΔAHC vuông tại H có HE vuông góc AC

nên AE*AC=AH^2

=>AD*AB=AE*AC

4: BD*BA+AE*AC

=AH^2+BH^2=AB^2

5: AD*AB=AE*AC

=>AD/AC=AE/AB

=>ΔADE đồng dạng với ΔACB

6: góc AED+góc MAC

=góc AHD+góc MCA

=góc ABC+góc ACB=90 độ

=>DE vuông góc AM

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc C chung

=>ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD*CB=CA*CE

c: Xét ΔBEC và ΔADC có

CB/CA=CE/CD

góc C chung

=>ΔBEC đồg dạng vơi ΔADC

5 tháng 3 2023

c.ơn ạ

 

20 tháng 12 2023

a: Xét ΔABC vuông tại A có \(\left\{{}\begin{matrix}sinB=\dfrac{AC}{BC}\\sinC=\dfrac{AB}{BC}\end{matrix}\right.\)

=>\(\dfrac{sinC}{sinB}=\dfrac{AB}{BC}:\dfrac{AC}{BC}=\dfrac{AB}{AC}\)

b: Xét ΔAHB vuông tại H và ΔADE vuông tại D có

AH=AD

\(\widehat{HAB}=\widehat{DAE}\)

Do đó: ΔAHB=ΔADE

c: Ta có: ΔAHB=ΔADE

=>AB=AE

=>A là trung điểm của BE

Xét ΔCEB có

CA là đường trung tuyến

CA là đường cao

Do đó: ΔCEB cân tại C

d: Ta có: ΔCEB cân tại C

mà CA là đường cao

nên CA là phân giác của góc BCE

Xét ΔCIA vuông tại I và ΔCHA vuông tại H có

CA chung

\(\widehat{ICA}=\widehat{HCA}\)

Do đó: ΔCIA=ΔCHA

=>AI=AH

Xét (A;AH) có

AI là bán kính

CE\(\perp\)AI tại I

Do đó: CE là tiếp tuyến của (A;AH)

20 tháng 3 2022

làm dùm mình nha các bạn có hình của đường cao ah xong kẻ thêm những chi tiết của câu a và b nha 

a) Xét ΔADH vuông tại D và ΔADM vuông tại D có 

AD chung

DH=DM(gt)

Do đó: ΔADH=ΔADM(hai cạnh góc vuông)

Suy ra: AH=AM(Hai cạnh tương ứng)(1)

Xét ΔAEH vuông tại E và ΔAEN vuông tại E có 

AE chung

HE=NE(gt)

Do đó: ΔAEH=ΔAEN(hai cạnh góc vuông)

Suy ra: AH=AN(Hai cạnh tương ứng)(2)

Từ (1) và (2) suy ra AM=AN(=AH)

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạg với ΔHBA

b: Sửa đề: S ABC/S HBA=25/9

=>AB/HB=BC/BA=AC/HA=5/3

=>15/HB=BC/15=AC/HA=5/3

=>HB=9cm; BC=25cm

AC=căn 25^2-15^2=20cm

AH=15*20/25=12cm

23 tháng 11 2016

Ta có hình vẽ sau:

A H D B C 1 2 M N

a) \(\widehat{AHB}\) = \(\widehat{DHB}\) = \(\frac{180^o}{2}\) = 90o (2 góc kề bù)

Xét ΔABH và ΔDBH có:

BH là cạnh chung

\(\widehat{AHB}\) = \(\widehat{DHB}\) = 90o (cm trên)

AH = DH (gt)

=> ΔABH = ΔDBH (c.g.c) (đpcm)

b) Vì ΔABH = ΔDBH (ý a)

=> \(\widehat{B_1}\) = \(\widehat{B_2}\) ( 2 góc tương ứng)

= BC là tia phân giác của \(\widehat{ABD}\) (đpcm)

c) Vì ΔABH = ΔDBH => AB = DB (2 cạnh tương ứng)

Xét ΔABC và ΔDBC có:

BC là cạnh chung

\(\widehat{B_1}\) = \(\widehat{B_2}\) (ý b)

AB = DB (cm tên)

=> ΔABC = ΔDBC(c.g.c)

=> \(\widehat{BAC}\) = \(\widehat{BDC}\) (2 góc tương ứng) (đpcm)

d) Vì ΔABH = ΔDBH (ý a)

=> AB = DB => \(\frac{1}{2}\)AB = \(\frac{1}{2}\)DB

=> NB = ND = \(\frac{1}{2}\)DB

=> N là trung điểm của BD(đpcm)

23 tháng 11 2016

câu a) có nhầm ko z bn?

a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có

HB chung

HA=HD

Do đó: ΔABH=ΔDBH

b: Ta có: ΔABH=ΔDBH

nên \(\widehat{ABH}=\widehat{DBH}\)

hay BC là tia phân giác của góc ABD

24 tháng 11 2016

Ta có hình vẽ:

A B C D H M N

a/ Xét tam giác ABH và tam giác DBH có:

BH: cạnh chung

\(\widehat{AHB}\)=\(\widehat{DHB}\)=900 (GT)

AH = HD (GT)

Vậy tam giác ABH = tam giác DBH (c.g.c)

b/ Ta có: tam giác ABH = tam giác DBH (câu a)

=> \(\widehat{ABH}\)=\(\widehat{DBH}\)( 2 góc tương ứng)

=> \(\widehat{ABC}\)=\(\widehat{DBC}\)

=> BC là phân giác của góc ABD (đpcm)

c/ Xét tam giác ABC và tam giác DBC có:

BC: cạnh chung

\(\widehat{ABC}\)=\(\widehat{DBC}\) (đã chứng minh)

AB = DB (vì tam giác ABH = tam giác DBH)

=> tam giác ABC = tam giác DBC (c.g.c)

=>\(\widehat{BAC}\)=\(\widehat{BDC}\)(2 góc tương ứng)

d/ Ta có: AB = DB (vì tam giác ABH = tam giác DBH)

Mà BM = AM

=> BN = DN

\(\Rightarrow\) Vậy N là trung điểm BD (đpcm)