Tính a
\(\frac{\sqrt{x^2-4\sqrt{x}+4}}{2\sqrt{x}-4}=a\)
💝❤💙
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x^2+3x+4\right)^2\)
ta có:
\(x^2+3x+4=x^2+2\cdot\dfrac{3}{2}x+\left(\dfrac{3}{2}\right)^2+\dfrac{7}{4}\\ =\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
vậy \(minA=\left(\dfrac{7}{4}\right)^2=\dfrac{49}{16}\Leftrightarrow x=-\dfrac{3}{2}\)
Bạn xem lại đề bài 1 và 2.b nhé !
2/ \(A=\sqrt{\left(3-5\sqrt{2}\right)^2}-\sqrt{51+10\sqrt{2}}\)
\(A=5\sqrt{2}-3-\sqrt{\left(5\sqrt{2}+1\right)^2}\)
\(A=5\sqrt{2}-3-5\sqrt{2}-1\)
\(A=-4\)
câu hỏi sai
sao bt sai