Chứng minh \(3^{2012}-1\)chia hết cho \(2^{2014}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{2012}-1=\left(4-1\right)^{2012}-1=BS4^{2012}+1-1\)
\(=BS4^{2012}=BS2^{2014}⋮2^{2014}\)
ĐPCM
\(3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+...+3^{2009}\right)⋮40\)
ta có: 3^2014=(3^2)^1007=9^1007=......9
1^2012=.....1
=>2013^2014+2011^2012=....9+....1=........0 chia hết 10
vậy 2013^2014+2011^2012 chia hết 10
\(3^{2014}-3^{2013}+3^{2012}=3^{2012}\left(9-3+1\right)\)
\(=3^{2012}\cdot7=3^{2010}\cdot63⋮63\)
Dpcm
32014 - 32013 + 32012
= 32012 x 32 - 32012 x 3 + 32012 x 1
= 32012 x 9 - 32012 x 3 + 32012 x 1
= 32012 x (9 - 3 + 1)
= 32012 x 7
= 32010 x 32 x 7
= 32010 x 9 x 7
= 32010 x 63
Mà 63 \(⋮\) 63 nên 32010 x 63 \(⋮\) 63 => 32014 - 32013 + 32012 \(⋮\)63
Có : 7^2012 = 7^4.503 = (7^4)^503 = (...1)^503 = ....1 ( số ...1 có gạch ngang trên đầu nha ) => 7^2012^2014 = (...1)^2014 = ...1
3^92 = 3^4.23 = (3^4)^23 = (....1)^23 = ....1 => 3^92^94 = (....1)^2014 = ...1
=> B = 1/2 . (....1 - ....1 ) = 1/2 . (....0)
=> B có tận cùng là 5 hoặc 0 => B chia hết cho 5 (ĐPCM)