Cho phương trình: \(x^2-2\left(a-2b\right)x-4a^2+2b^2+2a+8b-10=0\)
Chứng tỏ rằng phương trình luôn có nghiệm với mọi a, b.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Delta=\left(2m-2\right)^2-4\left(-m-3\right)\)
\(=4m^2-8m+4+4m+12\)
\(=4m^2-4m+16\)
\(=\left(2m-1\right)^2+15>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
b: Theo đề, ta có:
\(\left(x_1+x_2\right)^2-2x_1x_2>=10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)>=10\)
\(\Leftrightarrow4m^2-8m+4+2m+6-10>=0\)
\(\Leftrightarrow4m^2-6m>=0\)
=>m<=0 hoặc m>=3/2
Sửa đề: a + 2b + 3c = 1
Xét: \(4x^2-4\left(2a+1\right)x+4a^2+192abc+=0\)
có: \(\Delta_1'=4\left(2a+1\right)^2-4\left(4a^2+192abc+1\right)=16a-768abc=16a\left(1-48bc\right)\)
Xét \(4x^2-4\left(2b+1\right)x+4b^2+96abc+1=0\)
có: \(\Delta_1'=4\left(2b+1\right)^2-4\left(4b^2+96abc+1\right)=16b-384abc=16b\left(1-24ac\right)\)
Ta lại xét: \(\left(1-48bc\right)+\left(1-24ac\right)=2-24c\left(a+2b\right)\)
\(=2-24c\left(1-3c\right)=2\left(36c^2-12c+1\right)=2\left(6c-1\right)^2\ge0\)với mọi c
=> Tồn tại ít nhất 1 trong 2 số: \(\left(1-48bc\right);\left(1-24ac\right)\) không âm
Vì a và b không âm
=> Tồn tại ít nhất 1 trong 2 số : \(16a\left(1-48bc\right);16b\left(1-24ac\right)\)không âm
=> Tồn tại it nhất 1 trong 2 \(\Delta_1';\Delta_2'\)không âm
=> Có ít nhất 1 trong 2 phương trình trên có nghiệm.
a) đenta=b^2-4c
2b+4c=-1=>c=-1-2b)/4
thay vô chứng minh nó lớn hơn 0
x1+x2=b
x1x2=c
ta có x1=2x2
thay vô tìm x1;x2 theo b,c rồi thay vô
mk tính được x1=2x;x2=b/3 thay cái này vô x1-2x2=0 tìm ra b
x1=căn(c/2);x2=căn(2c) thay vô cái x1-2x2=0 tìm ra c
a: Khi m=1 thì phương trình sẽ là \(x^2-3x-5=0\)
\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-5\right)=9+20=29\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{29}}{2}\\x_2=\dfrac{3+\sqrt{29}}{2}\end{matrix}\right.\)
b: \(\text{Δ}=\left(2m+1\right)^2-4\left(-m-4\right)\)
\(=4m^2+4m+1+4m+16\)
\(=4m^2+8m+17\)
\(=4m^2+4m+4+13\)
\(=\left(2m+2\right)^2+13>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
a, Thay m =1 ta đc
\(x^2-3x-5=0\)
\(\Delta=9-4\left(-5\right)=9+20=29>0\)
Vậy pt luôn có 2 nghiệm pb
\(x=\dfrac{3\pm\sqrt{29}}{2}\)
b, Ta có \(\Delta=\left(2m+1\right)^2-4\left(-m-4\right)=4m^2+4m+1+4m+16\)
\(=4m^2+8m+16+1=4\left(m^2+2m+4\right)+1=4\left(m+1\right)^2+13>0\)
vậy pt luôn có 2 nghiệm pb
a, Khi m=2, phương trình trở thành:
\(2x^2-5x+2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)
Vậy với m=2, phương trình có nghiệm \(x=\dfrac{1}{2};x=2\)
b, \(\Delta=\left(m+3\right)^2-8m=m^2-2m+9=\left(m-1\right)^2+8>0,\forall m\)
\(\Rightarrow\) Phương trình đã cho có nghiệm với mọi m
Theo định lí Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+3}{2}\\x_1x_2=\dfrac{m}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=\dfrac{m^2+6m+9}{4}\\4x_1x_2=2m\end{matrix}\right.\)
\(\Rightarrow\left(x_1-x_2\right)^2=\dfrac{m^2-2m+9}{4}\)
\(\Rightarrow A=\left|x_1-x_2\right|=\dfrac{\sqrt{m^2-2m+9}}{2}=\dfrac{\sqrt{\left(m-1\right)^2+8}}{2}\ge\sqrt{2}\)
\(\Rightarrow minA=\sqrt{2}\Leftrightarrow m=1\)
pt: \(2x^2-\left(m+3\right)x+m=0\left(1\right)\)
a, khi m=2 ta có: \(2x^2-5x+2=0\)(2)
\(\Delta=\left(-5\right)^2-4.2.2=9>0\)
vậy pt(2) có 2 nghiệm phan biệt \(x3=\dfrac{5+\sqrt{9}}{2.2}=2\)
\(x4=\dfrac{5-\sqrt{9}}{2.2}=0,5\)
b,từ pt(1) có \(\Delta=\left[-\left(m+3\right)\right]^2-4m.2=m^2+6m+9-8m\)
\(=m^2-2m+9=\left(m-1\right)^2+8>0\left(\forall m\right)\)
vậy \(\forall m\) pt(1) luôn có 2 nghiệm phân biệt x1,x2
điều kiện để pt(1) có 2 nghiệm phân biệt không âm khi
\(\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.< =>\left\{{}\begin{matrix}\Delta>0\left(cmt\right)\\x1+x2>0\\x1.x2>0\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{m+3}{2}>0\\\dfrac{m}{2} >0\end{matrix}\right.\)\(< =>\left\{{}\begin{matrix}m>-3\\m>0\end{matrix}\right.\)
\(< =>m>0\)
theo vi ét =>\(\left\{{}\begin{matrix}x1+x2=\dfrac{m+3}{2}\\x1.x2=\dfrac{m}{2}\end{matrix}\right.\)
\(=>A=\left|x1-x2\right|\)
\(=>A=\sqrt{\left(x1-x2\right)^2}=\sqrt{\left(x1+x2\right)^2-4x1x2}\)
\(A=\sqrt{\left(\dfrac{m+3}{2}\right)^2-4\dfrac{m}{2}}=\sqrt{\dfrac{m^2+6m+9-8m}{4}}\)
\(A=\sqrt{\dfrac{\left(m-1\right)^2+8}{4}}=\dfrac{1}{2}\sqrt{\left(m-1\right)^2+8}\)\(\ge\sqrt{2}\)=>Min A=\(\sqrt{2}\)
dấu = xảy ra <=>m=1(TM)
Bạn xem lại đề. Với $a=1,b=2$ PT vô nghiệm.