K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 6 2019

\(B\le\frac{x^2+25-x^2}{2}=\frac{25}{2}\)

\(\Rightarrow B_{max}=\frac{25}{2}\) khi \(\left|x\right|=\sqrt{25-x^2}\Leftrightarrow x=\pm\frac{5\sqrt{2}}{2}\)

27 tháng 6 2019

Bạn ơi, đó là dùng công thức nào vậy?

12 tháng 8 2017

\(y^2=-7x+71+24\sqrt{\left(x-1\right)\left(5-x\right)}\\ \)

Mà \(24\sqrt{\left(x-1\right)\left(5-x\right)}\ge0\\ \)

\(y^2\ge-7x+71\ge-35+71=36\\ \)=> \(y\ge6\)

Dấu= xảy ra khi và chỉ khi x=5

13 tháng 8 2018

Bạn làm vi diệu vậy

5 tháng 10 2015

Áp dụng BĐT Bu-nhi-a-cốp-xki ta có:

\(y^2=\left(3\sqrt{x-1}+4.\sqrt{5-x}\right)^2\le\left(3^2+4^2\right)\left(x-1+5-x\right)=100\Rightarrow y\le10\).

Xảy ra đẳng thức khi và chỉ khi \(\frac{3}{4}=\frac{\sqrt{x-1}}{\sqrt{5-x}}\Leftrightarrow\frac{x-1}{5-x}=\frac{9}{16}\Leftrightarrow16x-16=45-9x\Leftrightarrow x=2,44\).

vậy max y = 10 khi và chỉ khi x = 2,44 

1 tháng 1 2020

Áp dụng BĐT Bunhiacopxki ta có :

\(\left(3\sqrt{x-1}+4\sqrt{5-x}\right)^2\le\left(3^2+4^2\right)\left(x-1+5-x\right)\)

\(\Leftrightarrow\left(3\sqrt{x-1}+4\sqrt{5-x}\right)^2\le100\)

\(\Leftrightarrow f\left(x\right)\le10\)

Dấu "=" xảy ra :

\(\Leftrightarrow\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\)

Vậy...

20 tháng 11 2021

\(a,\)\(A=\left\{x\in R|x< 3\right\}\Rightarrow A=\left(\text{ -∞;3}\right)\)

\(B=\left\{-1;0;1;2;3;4;5\right\}\)

\(\Rightarrow A\cap B=\left\{-1;0;1;2\right\}\)

\(b,x=-1\Rightarrow y=1-2\left(-1\right)+m=m+3\) 

\(x=1\Rightarrow y=1-2+m=m-1\)

\(\Rightarrow C=(m-1;m+3]\subset A\)

\(\Rightarrow C\subset A\Leftrightarrow m+3< 3\Leftrightarrow m< 0\)

 

27 tháng 9 2017

a/ \(B=\left(\frac{1}{\sqrt{x}+2}+\frac{7}{x-4}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}-2}-1\right)\)

=> \(B=\left(\frac{1}{\sqrt{x}+2}+\frac{7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\frac{\sqrt{x}-1-\sqrt{x}+2}{\sqrt{x}-2}\right)\)

=> \(B=\frac{\sqrt{x}+5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{1}{\sqrt{x}-2}\)

=> \(B=\frac{\sqrt{x}+5}{\sqrt{x}+2}\)

b/ B>2  <=> \(\frac{\sqrt{x}+5}{\sqrt{x}+2}>2\) <=> \(\sqrt{x}+5>2\sqrt{x}+4\)

<=> \(1>\sqrt{x}\)=> \(-1\le x\le1\)

c/ \(B=\frac{\sqrt{x}+5}{\sqrt{x}+2}=\frac{\sqrt{x}+2+3}{\sqrt{x}+2}=1+\frac{3}{\sqrt{x}+2}\)

Để Bmax thì \(\sqrt{x}+2\) đạt giá trị nhỏ nhất . Do \(\sqrt{x}+2\ge2\)=> Đạt nhỏ nhất khi x=0

Khí đó giá trị lớn nhất của B là: \(1+\frac{3}{2}=\frac{5}{2}\)Đạt được khi x=0

30 tháng 4 2021

- Áp dụng BĐT bunhiacopxki ta có :

\(\left(3sinx+4cosx\right)^2\le\left(3^2+4^2\right)\left(sin^2x+cos^2x\right)=25\)

\(\Leftrightarrow-5\le M\le5\)

P/s : Chắc là đề nhầm :vvv nếu không nhầm thì thêm bớt rồi bunhi xong cộng với cos thêm vào nha

30 tháng 4 2021

Cảm ơn bạn nhìu nhaaa!

4 tháng 7 2017

NX \(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}\)

\(A^2=1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}=\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}\)

\(=\frac{a^2\left(a^2+2a+1+1\right)+\left(a+1\right)^2}{a^2\left(a+1\right)^2}\)=\(\frac{a^4+2a^3+2a^2+\left(a+1\right)^2}{a^2\left(a+1\right)^2}\)

\(=\frac{a^4+2a^2\left(a+1\right)+\left(a+1\right)^2}{a^2\left(a+1\right)^2}=\frac{\left(a^2+a+1\right)^2}{a^2\left(a+1\right)^2}\)=\(\left[\frac{a^2+a+1}{a\left(a+1\right)}\right]^2\)suy ra A=\(\frac{a^2+a+1}{a\left(a+1\right)}\)

                                                                                                =\(\frac{a\left(a+1\right)+1}{a\left(a+1\right)}=1+\frac{1}{a\left(a+1\right)}=1+\frac{1}{a}-\frac{1}{a+1}\)

ap dung vao bai ta co =\(\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{2012}-\frac{1}{2013}\right)\)

=\(2011+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)\(2011+\frac{1}{2}-\frac{1}{2013}=2011,499503\)

6 tháng 2 2017

đặt \(A=x\sqrt{6-x}+\left(5-x\right)\sqrt{x+1}\)

\(A=\sqrt{x}\sqrt{x\left(6-x\right)}+\sqrt{5-x}\sqrt{\left(5-x\right)\left(x+1\right)}\)

Áp dụng BĐT bunyakovsky :

\(A^2\le\left(x+5-x\right)\left[x\left(6-x\right)+\left(5-x\right)\left(x+1\right)\right]\)

\(A^2\le5\left(-2x^2+10x+5\right)=5\left[-2\left(x-\frac{5}{2}\right)^2+\frac{35}{2}\right]\)

\(A^2\le\frac{5.35}{2}=\frac{175}{2}=87,5\Leftrightarrow A\le\sqrt{87,5}\)

dấu = xảy ra khi \(\left\{\begin{matrix}x=\frac{5}{2}\\\frac{1}{6-x}=\frac{1}{x+1}\end{matrix}\right.\)<=> x=2,5

vậy Amax=.....