K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2019

Bạn đăng bên box toán nhé

27 tháng 6 2019

nhanh quá

21 tháng 7 2021

1) `2x(3x-1)-(2x+1)(x-3)`

`=6x^2-2x-2x^2+6x-x+3`

`=4x^2+3x+3`

2) `3(x^2-3x)-(4x+2)(x-1)`

`=3x^2-9x-4x^2+4x-2x+2`

`=-x^2-7x+2`

3) `3x(x-5)-(x-2)^2-(2x+3)(2x-3)`

`=3x^2-15x-(x^2-4x+4)-(4x^2-9)`

`=3x^2-15x-x^2+4x-4-4x^2+9`

`=-2x^2-11x+5`

4) `(2x-3)^2+(2x-1)(x+4)`

`=4x^2-12x+9+2x^2+8x-x-4`

`=6x^2-5x+5`

1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)

=-27x^3-18x^2+4x+10

2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27

=7x^3+37x^2+46x+33

5:

\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)

\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)

=7x^3-48x^2+8x-35

b: =x-2

d: \(=-x^3+\dfrac{3}{2}-2x\)

2 tháng 12 2021

\(a,=\dfrac{4x+8}{x^2+2x}=\dfrac{4\left(x+2\right)}{x\left(x+2\right)}=\dfrac{4}{x}\\ b,=\dfrac{\left(2x-3\right)-\left(2x-4\right)}{x-2}=\dfrac{2x-3-2x+4}{x-2}=\dfrac{1}{x-2}\\ c,=\dfrac{2x-1-3x-2}{x+3}=\dfrac{-x-3}{x+3}=\dfrac{-\left(x+3\right)}{x+3}=-1\\ d,=\dfrac{11x-18+x}{2x-3}=\dfrac{12x-18}{2x-3}=\dfrac{6\left(2x-3\right)}{2x-3}=6\)

\(e,=\dfrac{3x-6-9x+3}{2x+1}=\dfrac{-6x-3}{2x+1}=\dfrac{-3\left(2x+1\right)}{2x+1}=-3\)

 

10 tháng 7 2021

Thế mày làm đi

 

10 tháng 7 2021

cho ít thôi thì làm

 

31 tháng 7 2023

p) \(\left(9-x\right)\left(x^2+2x-3\right)\)

\(=9\left(x^2+2x-3\right)-x\left(x^2+2x-3\right)\)

\(=9x^2+18x-27-x^3-2x^2+3x\)

\(=-x^3+7x^2+21x-27\)

n) \(\left(-x+3\right)\left(x^2+x+1\right)\)

\(=-x\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)

\(=-x^3-x^2-x+3x^2+3x+3\)

\(=-x^2+2x^2+2x+3\)

o) \(\left(-6x+\dfrac{1}{2}\right)\left(x^2-4x+2\right)\)

\(=-6x\left(x^2-4x+2\right)+\dfrac{1}{2}\left(x^2-4x+2\right)\)

\(=-6x^3+24x^2-12x+\dfrac{1}{2}x^2-2x+1\)

\(=-6x^3+\dfrac{49}{2}x^2-14x+1\)

q) \(\left(6x+1\right)\left(x^2-2x-3\right)\)

\(=6x\left(x^2-2x-3\right)+\left(x^2-2x-3\right)\)

\(=6x^3-12x^2-18x+x^2-2x-3\)

\(=6x^3-11x^2-20x-3\)

r) \(\left(2x+1\right)\left(-x^2-3x+1\right)\)

\(=2x\left(-x^2-3x+1\right)+\left(-x^2-3x+1\right)\)

\(=-2x^3-6x^2+2x-x^2-3x+1\)

\(=-2x^3-7x^2-x+1\)

u) \(\left(2x-3\right)\left(-x^2+x+6\right)\)

\(=2x\left(-x^2+x+6\right)-3\left(-x^2+x+6\right)\)

\(=-2x^3+2x^2+12x+3x^2-3x-18\)

\(=-2x^3+5x^2+9x-18\)

s) \(\left(-4x+5\right)\left(x^2+3x-2\right)\)

\(=-4x\left(x^2+3x-2\right)+5\left(x^2+3x-2\right)\)

\(=-4x^3-12x^2+8x+5x^2+15x-10\)

\(=-4x^3-7x^2+23x-10\)

v) \(\left(-\dfrac{1}{2}x+3\right)\left(2x+6-4x^3\right)\)

\(=-\dfrac{1}{2}x\left(2x+6-4x^3\right)+3\left(2x+6-4x^3\right)\)

\(=-x^2-3+2x^4+6x+18-12x^3\)

\(=2x^4-12x^3-x^2+6x+15\)

p: (-x+9)(x^2+2x-3)

=-x^3-2x^2+3x+9x^2+18x-27

=-x^3+7x^2+21x-27

n: (-x+3)(x^2+x+1)

=-x^3-x^2-x+3x^2+3x+3

=-x^3+2x^2+2x+3

o: (-6x+1/2)(x^2-4x+2)

=-6x^3+24x^2-12x+1/2x^2-2x+1

=-64x^3+49/2x^2-14x+1

q: (6x+1)(x^2-2x-3)

=6x^3-12x^2-18x+x^2-2x-3

=6x^3-11x^2-20x-3

r: (2x+1)(-x^2-3x+1)

=-2x^3-6x^2+2x-x^2-3x+1

=-2x^3-7x^2-x+1

u: =-2x^3+2x^2+12x+3x^2-3x-18

=-2x^3+5x^2+9x-18

s: =-4x^3-12x^2+8x+5x^2+15x-10

=-4x^3-7x^2+23x-10

21 tháng 10 2021

a: Ta có: \(3x\left(2x+1\right)+\left(2x-3\right)\left(x+1\right)\)

\(=6x^2+3x+2x^2+2x-3x-3\)

\(=8x^2+2x-3\)

NV
7 tháng 9 2020

a/

\(\Leftrightarrow x-2x^2+2x^2-3x-4x+6=0\)

\(\Leftrightarrow-6x+6=0\)

\(\Leftrightarrow x=1\)

b/

\(\Leftrightarrow2x^2-4x-2x^2-6x=0\)

\(\Leftrightarrow-10x=0\)

\(\Leftrightarrow x=0\)

c/

\(\Leftrightarrow\left(2x+3\right)\left(2x+3+x-3\right)=0\)

\(\Leftrightarrow3x\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\frac{3}{2}\end{matrix}\right.\)

NV
7 tháng 9 2020

c/

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(9y^2+30y+25\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(3y+5\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\3x+5=0\end{matrix}\right.\)

\(\Leftrightarrow x=y=-\frac{5}{3}\)

d/

\(\Leftrightarrow4x^2-4x+1+4x^2+4x+1-2\left(4x^2-2x-2\right)+x=12\)

\(\Leftrightarrow8x^2+x+2-8x^2+4x+4=12\)

\(\Leftrightarrow5x=6\)

\(\Leftrightarrow x=\frac{6}{5}\)

1: Ta có: \(2x\left(x+3\right)-6\left(x-3\right)=0\)

\(\Leftrightarrow2x^2+6x-6x+18=0\)

\(\Leftrightarrow2x^2+18=0\left(loại\right)\)

2: Ta có: \(2x^2\left(2x+3\right)+\left(2x+3\right)=0\)

\(\Leftrightarrow2x+3=0\)

hay \(x=-\dfrac{3}{2}\)

3: Ta có: \(\left(x-2\right)\left(x+1\right)-4x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(1-3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

4: Ta có: \(2x\left(x-5\right)-3x+15=0\)

\(\Leftrightarrow\left(x-5\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)

5: Ta có: \(3x\left(x+4\right)-2x-8=0\)

\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)

6: Ta có: \(x^2\left(2x-6\right)+2x-6=0\)

\(\Leftrightarrow2x-6=0\)

hay x=3

1 tháng 9 2020

( 2x - 3 )( x + 1 ) - 2x2 + 6x = 0

<=> 2x2 - x - 3 - 2x2 + 6x = 0

<=> 5x - 3 = 0

<=> 5x = 3

<=> x = 3/5

( x2 - x + 1 )( x - 3 ) - x3 + 4x2 = 0

<=> x3 - 4x2 + 4x - 3 - x3 + 4x2 = 0

<=> 4x - 3 = 0

<=> 4x = 3

<=> x = 3/4

( x2 - 2 )( x2 + 2 ) - x4 - 2x + 5 = 0

<=> ( x2 )2 - 4 - x4 - 2x + 5 = 0

<=> x4 + 1 - x4 - 2x = 0

<=> 1 - 2x = 0

<=> 2x = 1

<=> x = 1/2

( x - 3 )( x2 - 3x + 2 ) - ( x2 - 2x - 7 )( x - 2 ) + 2x2 - 2x = 0

<=> x3 - 6x+ 11x - 6 - ( x3 - 4x2 - 3x + 14 ) + 2x2 - 2x = 0

<=> x3 - 6x+ 11x - 6 - x3 + 4x2 + 3x - 14 + 2x2 - 2x = 0

<=> 12x - 20 = 0

<=> 12x = 20

<=> x = 20/12 = 5/3

1 tháng 9 2020

a, \(\left(2x-3\right)\left(x+1\right)-2x^2+6x=0\)

\(\Leftrightarrow2x^2+2x-3x-3-2x^2+6x=0\Leftrightarrow5x-3=0\Leftrightarrow x=\frac{3}{5}\)

b, \(\left(x^2-x+1\right)\left(x-3\right)-x^3+4x^2=0\)

\(\Leftrightarrow x^3-3x^2-x^2+3x+x-3-x^3+4x^2=0\Leftrightarrow4x-3=0\Leftrightarrow x=\frac{3}{4}\)

c ; d tương tự nhé !