Cho hình thoi ABCD có góc A=120 độ, AB=a. Kẻ tia Ax nằm trong góc A và \(\widehat{xAB}\)=15 độ. Ax cắt BC, CD theo thứ tự tại I, K. Tính theo a giá trị của biểu thức \(\frac{1}{AI^2}+\frac{1}{AK^2}\)
Giúp mình với nha mọi người
m.n học tốt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ tia Ay sao cho \(\widehat{yAD}=15^0\). Tia Ay cắt DC tại E.
Kẻ \(AF\perp DC\left(F\in DC\right)\)
\(\Delta EAD=\Delta IAB\left(g-c-g\right)\)
\(\Rightarrow\left\{{}\begin{matrix}AD=AB\\AE=AI\end{matrix}\right.\) (1)
\(\widehat{EAI}=\widehat{DAB}-\widehat{DAE}-\widehat{IAB}=120^0-15^0-15^0=90^0\)
\(\Rightarrow\dfrac{1}{AE^2}+\dfrac{1}{AK^2}=\dfrac{1}{AF^2}\) (h.t.l. trong \(\Delta AEK\) vuông tại A) (2)
\(\widehat{DAC}+\widehat{DAB}=180^0\) (trong cùng phía, AB // CD)
\(\Rightarrow\widehat{DAC}=60^0\)
\(\Rightarrow\Delta ADC\) đều (AD = DC) có AF là đ.c.
\(\Rightarrow AF=\dfrac{\sqrt{3}}{2}AD\)
\(\Rightarrow\dfrac{1}{AF^2}=\dfrac{4}{3AD^2}\) (3)
(1), (2) và (3) \(\Rightarrow\dfrac{4}{3AB^2}=\dfrac{1}{AI^2}+\dfrac{1}{AK^2}\left(\text{đ}pcm\right)\)
Hình tự vẽ >o<
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Trên CD lấy N sao cho góc DAF=15 độ.
Kẻ AE vuông góc với CD tại E.
Tam giác ABM=Tam giác ADF (g.c.g), suy ra AM=AF.
Tam giác AED vuông tại E có \(AD=AE\cdot sinD=\frac{\sqrt{3}}{2}AD\Rightarrow AE^2=\frac{3}{4}AB^2\)
Tam giác ANF có góc ANF=góc BAD-góc BAM-góc DAF=120 độ- 15 độ- 15 độ =90 độ. Suy ra tam giác NAF vuông tại A.
\(\Rightarrow\frac{1}{AN^2}+\frac{1}{AF^2}=\frac{1}{AE^2}\)
hay \(\frac{1}{AN^2}+\frac{1}{AM^2}=\frac{4}{3AB^2}\)
Hình vẽ không được đẹp cho lắm :))
Từ kẻ đường thẳng tạo với cạnh AD một góc bằng 15 độ, cắt cạnh CD tại K. Từ đó dễ dàng suy ra góc KAN = 90 độ
Từ A lại kẻ đường thẳng vuông góc với CD tại H.
Xét tam giác AKD và tam giác AMB có AB = AD , góc BAM = góc KAD = 15 độ , góc ABM = góc ADK
=> tam giác AKD = tam giác AMB (g.c.g) => AM = AK
Áp dụng hệ thức về cạnh trong tam giác vuông, ta có : \(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{1}{AK^2}+\frac{1}{AN^2}=\frac{1}{AH^2}\)
Mà : \(AH=sin\widehat{ADH}.AD=sin60^o.AB=\frac{\sqrt{3}}{2}AB\)
\(\Rightarrow\frac{1}{AH^2}=\frac{4}{3AB^2}\)
Vậy \(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{4}{3AB^2}\)
Trên cạnh CD lấy điểm L sao cho ^DAL = ^xAB = 150. Khi đó ^KAL = ^BAD - ^xAB - ^DAL = 900
Xét \(\Delta\)ALD và \(\Delta\)AIB: AD = AB, ^ADL = ^ABI (=600), ^DAL = ^BAI (=150) => \(\Delta\)ALD = \(\Delta\)AIB (g.c.g)
=> AI = AL (2 cạnh tuơng ứng). Xét \(\Delta\)AKL có ^KAL = 900 (cmt), đường cao AH
Suy ra \(\frac{1}{AL^2}+\frac{1}{AK^2}=\frac{1}{AH^2}=\frac{1}{\left(\frac{\sqrt{3}}{2}a\right)^2}=\frac{4}{3a^2}\)(Hệ thức luợng tam giác vuông + Tỉ số lượng giác)
Hay \(\frac{1}{AI^2}+\frac{1}{AK^2}=\frac{4}{3a^2}\) (Vì AL = AI). Kết luận ...