K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

3 cos 2 x   -   2 sin x   +   2   =   0     ⇔   3 ( 1   -   sin 2 x )   -   2 sin x   +   2   =   0     ⇔   3 sin 2 x   +   2 sin x   -   5   =   0     ⇔   ( sin x   -   1 ) ( 3 sin x   +   5 )   =   0     ⇔   sin x   =   1     ⇔   x   =   π / 2   +   k 2 π ,   k   ∈   Z

2 tháng 7 2021

Pt \(\Leftrightarrow\left(2sinx-1\right)\left(2sin2x-1\right)=3-4\left(1-sin^2x\right)\)

\(\Leftrightarrow2sin2x\left(2sinx-1\right)-2sinx+1=-1+4sin^2x\)

\(\Leftrightarrow2sin2x\left(2sinx-1\right)-\left(4sin^2x+2sinx-2\right)=0\)

\(\Leftrightarrow2sin2x\left(2sinx-1\right)-2\left(2sinx-1\right)\left(sinx+1\right)=0\)

\(\Leftrightarrow2\left(2sinx-1\right)\left(sin2x-sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\left(1\right)\\sin2x=sinx+1\left(2\right)\end{matrix}\right.\)

Từ (1) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\),\(k\in Z\)

Từ (2)\(\Leftrightarrow2sinx.cosx-sinx-1=0\)

(Cái này tạm thời nghĩ ko ra,tối làm :)

2 tháng 7 2021

\(sin2x=sinx+1\)

\(\Rightarrow\left\{{}\begin{matrix}sin2x\ge0\\sin^22x=\left(sinx+1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ge0\\4sin^2x.cos^2x=\left(sinx+1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ge0\\4sin^2x\left(1-sin^2x\right)=\left(sinx+1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ge0\\\left(sinx+1\right)\left(4sin^2x-4sin^3x-sinx-1\right)=0\end{matrix}\right.\)

Bấm máy thấy pt \(-4sin^3x+4sin^2x-sinx-1=0\) có một nghiệm \(sinx< 0\) không thỏa mãn \(sin2x\ge0\)

(Hoặc thử sd phương pháp cardano xem, chắc sẽ tìm được cụ thể nghiệm)

\(\Rightarrow sinx=-1\Leftrightarrow x=-\dfrac{\pi}{2}+k2\pi\) (\(k\in Z\))

Vậy...

NV
7 tháng 8 2021

ĐKXĐ: \(cos2x\ne\dfrac{1}{2}\Leftrightarrow x\ne\pm\dfrac{\pi}{6}+k\pi\)

\(\sqrt{3}sin^2x-2sinx.cosx-\sqrt{3}cos^2x=0\)

\(\Leftrightarrow-sin2x-\sqrt{3}\left(cos^2x-sin^2x\right)=0\)

\(\Leftrightarrow sin2x+\sqrt{3}cos2x=0\)

\(\Leftrightarrow\dfrac{1}{2}sin2x+\dfrac{\sqrt{3}}{2}cos2x=0\)

\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow2x+\dfrac{\pi}{3}=k\pi\)

\(\Leftrightarrow x=-\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)

Nghiệm này bao gồm 2 họ nghiệm: \(\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k\pi\\x=\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

Do đó sau khi loại nghiệm theo ĐKXĐ ta được nghiệm của pt là: \(x=\dfrac{\pi}{3}+k\pi\)

21 tháng 10 2017

Đáp án A.

9 tháng 11 2017

Đáp án A

31 tháng 10 2017

Chọn A

1 tháng 10 2021

a

\(\Leftrightarrow\left(3sinx-sin3x\right)cos3x+\left(3cosx+cos3x\right)sin3x+3\sqrt{3}cos4x=3\)

\(\Leftrightarrow\left(sinx.cos3x+sin3x.cosx\right)+\sqrt{3}cos4x=1\)

\(\Leftrightarrow sin4x+\sqrt{3}cos4x=1\)

Tới đây thôi, mình lười ghi rồi =))

b

\(\Leftrightarrow\left(1-cos2x\right)\left(2sin^2x-1\right)\left(2sin^2+1\right)=cos2x\left(7cos^22x+3cos2x-4\right)\)

\(\Leftrightarrow\left(1-cos2x\right)\left(-cos2x\right)\left(2-cos2x\right)=cos2x\left(7cos^22x+3cos2x+4\right)\)

\(\Leftrightarrow-cos^22x+3cos2x-2=7cos^22x+3cos2x+4\)

\(\Leftrightarrow4cos^22x+3=0\)

=> pt vô nghiệm

1 tháng 10 2021

Mình cảm mơn nhiều nha :3

 

24 tháng 12 2021

\(ĐK:x\ge\dfrac{3}{2}\\ PT\Leftrightarrow3\sqrt{2x-3}-2\sqrt{2x-3}+6\sqrt{2x-3}=1\\ \Leftrightarrow7\sqrt{2x-3}=1\\ \Leftrightarrow\sqrt{2x-3}=\dfrac{1}{7}\\ \Leftrightarrow2x-3=\dfrac{1}{49}\Leftrightarrow x=\dfrac{74}{49}\left(tm\right)\)