Giải phương trình
x2-4x=8\(\sqrt{x-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=0\) không là nghiệm của phương trình
Chia hai vế phương trình cho x, phương trình trở thành:
\(\left(x+\dfrac{4}{x}\right)+2-m=4\sqrt{x+\dfrac{4}{x}}\left(1\right)\)
Đặt \(x+\dfrac{4}{x}=t\left(t\ge2\right)\)
\(\left(1\right)\Leftrightarrow m=f\left(t\right)=t^2-4t+2\left(2\right)\)
Phương trình đã cho có nghiệm khi phương trình \(\left(2\right)\) có nghiệm \(t\ge2\)
\(\Leftrightarrow m\ge f\left(2\right)=-2\)
\(\Rightarrow\) có 2021 giá trị thỏa mãn yêu cầu bài toán
Đặt \(\left|x\right|=t\left(t\ge0\right)\). Ta có phương trình \(t^2-t=6\)
\(\Rightarrow t^2-t-6=0\Rightarrow t^2-3t+2t-6=0\)
\(\Rightarrow\left(t-3\right)\left(t+2\right)=0\Rightarrow\left[{}\begin{matrix}t=3\left(TM\right)\\t=-2\left(L\right)\end{matrix}\right.\)
\(\Rightarrow\left|x\right|=3\Rightarrow x=\pm3\)
Đk:\(x\ge2\)
PT \(\Leftrightarrow x+1+3x+2\sqrt{3x\left(x+1\right)}=9+4x-8+6\sqrt{4x-8}\)
\(\Leftrightarrow\sqrt{3x\left(x+1\right)}=3\sqrt{4x-8}\)
\(\Leftrightarrow3x\left(x+1\right)=9\left(4x-8\right)\)
\(\Leftrightarrow3x^2-33x+72=0\)
\(\Leftrightarrow3x^2-24x-9x+72=0\)
\(\Leftrightarrow\left(x-8\right)\left(3x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=3\end{matrix}\right.\)(Tm)
Vậy ...
1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)
Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)
2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)
\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)
Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)
\(\Rightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy pt có no x=2
Đk: \(\left\{{}\begin{matrix}x^2-1\ge0\\3x^2+4x+1\ge0\\x+1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x+1\right)\ge0\\3\left(x+\dfrac{1}{3}\right)\left(x+1\right)\ge0\\x\ge-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\\\left[{}\begin{matrix}x\ge-\dfrac{1}{3}\\x\le-1\end{matrix}\right.\\x\ge-1\end{matrix}\right.\)\(\Rightarrow x=-1\)
Thay x=-1 vào pt thấy thỏa mãn
Vậy pt có nghiệm duy nhất x=-1
Bài làm sai, thiếu giá trị của $x$, ĐKXĐ loằng ngoằng.
Chị/anh xem lại nhé! Đây là câu cuối của đề thi tuyển sinh 10 năm nay ở Khánh Hòa.
ĐKXĐ: \(x\ge2\)
Ta có: \(\sqrt{4x-8}-\sqrt{9x-18}+2\sqrt{x-2}=1\)
\(\Leftrightarrow2\sqrt{x-2}-3\sqrt{x-2}+2\sqrt{x-2}=1\)
\(\Leftrightarrow\sqrt{x-2}=1\)
\(\Leftrightarrow x-2=1\)
hay x=3(nhận)
Vậy: S={3}
Do có quá ít câu hỏi nên bạn nào trả lời được, mình sẽ xóa khỏi mục "Câu hỏi hay" nhé!
f) Ta có: \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)
\(\Leftrightarrow4\left|x+1\right|-3\left|x+1\right|=4\)
\(\Leftrightarrow\left|x+1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
g) Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
\(\Leftrightarrow5\sqrt{x+1}-\sqrt{x+1}=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
Câu 1/ Ta có:
\(\left\{{}\begin{matrix}\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}\ge1\\\sqrt{x^2-4x+8}=\sqrt{\left(x-2\right)^2+4}\ge2\\\sqrt{x^2-4x+9}=\sqrt{\left(x-2\right)^2+5}\ge\sqrt{5}\end{matrix}\right.\)
\(\Rightarrow VT\ge1+2+\sqrt{5}=VP\)
Dấu = xảy ra khi x = 2
PS: Câu còn lại thì chỉ cần phân tích cái trong căn thành số chính phương là xong.
Câu 2/ Sửa đề
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)
Điều kiện: \(x\ge1\)
\(\Leftrightarrow\sqrt{\left(x-1\right)-4\sqrt{x-1}+4}+\sqrt{\left(x-1\right)+6\sqrt{x-1}+9}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}=5\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\sqrt{x-1}+3=5\)
Tới đây thì đơn giản rồi
Of course she is right. Panties are more comfortable. Actually as a girl I don't have experience of men's boxers but few boys in my friend circle use panties and according to them that are more comfortable than their regular and bore boxers. One thing to keep in mind that use one size larger than your regular size , if you are using 90 or L size regularly then whenever you buy panty take 95 or XL in that way. Actually its told by one of my boy friend and its pracal also as woman inners are somewhat tight for men due to penis and testes.
As far as girls point of view concerned I think many men now using bikinis instead of frenchis. As bikinis provide more comfort to their private organs and provide some kind of pleasure and excitement as well .
Some of boys in my friend circle use panties. I had done their shopping with them on many occasions. My cousin sister's husband is also using bikinis since about last 6–7 years as regular innerwear and my she has no objection.
Basically its problem of thinking . We attach that small piece of cloth with gender ,if you see careful both men inners and women panties are very much similar in look only some design and fashion trends are introduced in panties to make them more attractive and sex appealing.
Only piece of cloth panty can't decide your gender. Its every one's individual matter what to wear and what not. As jeans, T shirts, sport wears, shoes, jerkins, sweat shirt and many more things are now common for boys and girls then why not panties? I think one should prefer his or her comfort rather than others opinion or objections.
Of course she is right. Panties are more comfortable. Actually as a girl I don't have experience of men's boxers but few boys in my friend circle use panties and according to them that are more comfortable than their regular and bore boxers. One thing to keep in mind that use one size larger than your regular size , if you are using 90 or L size regularly then whenever you buy panty take 95 or XL in that way. Actually its told by one of my boy friend and its pracal also as woman inners are somewhat tight for men due to penis and testes.
As far as girls point of view concerned I think many men now using bikinis instead of frenchis. As bikinis provide more comfort to their private organs and provide some kind of pleasure and excitement as well .
Some of boys in my friend circle use panties. I had done their shopping with them on many occasions. My cousin sister's husband is also using bikinis since about last 6–7 years as regular innerwear and my she has no objection.
Basically its problem of thinking . We attach that small piece of cloth with gender ,if you see careful both men inners and women panties are very much similar in look only some design and fashion trends are introduced in panties to make them more attractive and sex appealing.
Only piece of cloth panty can't decide your gender. Its every one's individual matter what to wear and what not. As jeans, T shirts, sport wears, shoes, jerkins, sweat shirt and many more things are now common for boys and girls then why not panties? I think one should prefer his or her comfort rather than others opinion or objections.