K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

\(\left(a\right)\frac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\\ =\frac{2\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)+\sqrt{3}\left(\sqrt{2}-\sqrt{3}\right)}{2\sqrt{5}\left(1-\sqrt{2}\right)-\sqrt{3}+\sqrt{6}}\\ =\frac{2\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\sqrt{5}\left(1-\sqrt{2}\right)-\sqrt{3}\left(1-\sqrt{2}\right)}\\ =\frac{\left(2\sqrt{5}-\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{5}-\sqrt{3}\right)\left(1-\sqrt{2}\right)}\\ =\frac{\sqrt{3}-\sqrt{2}}{1-\sqrt{2}}\)

\(\left(b\right) \frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\\ =\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+2}\\ =\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}\\ =\frac{\left(\sqrt{2}+\sqrt{3}+2\right)+\left(\sqrt{2}.\sqrt{2}+\sqrt{2}.\sqrt{3}+\sqrt{2}.2\right)}{\sqrt{2}+\sqrt{3}+2}\\=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\sqrt{2}+\sqrt{3}+2}\\ =\frac{\left(\sqrt{2}+\sqrt{3}+2\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+2}\\ =1+\sqrt{2}\)

\(\left(c\right)\sqrt{9\left(3-a\right)^2}vớia>3\\ =\sqrt{9}.\sqrt{\left(3-a\right)^2}\\ =3.\left|3-a\right|\\ =-3\left(3-a\right)vì.a>3\\ =3a-9\)

\(\left(d\right)\sqrt{a^2.\left(a-2\right)^2}vớia< 0\\ =\sqrt{\left[a\left(a-2\right)\right]^2}\\ =\left|a\left(a-2\right)\right|=-a.\left[-\left(a-2\right)\right]=a\left(a-2\right)=a^2-2a\)

Chúc bạn học tốt ! hehe

18 tháng 8 2016

a) \(\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\frac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\sqrt{\frac{3}{7}}\)

b) \(\frac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}=\frac{2\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\sqrt{5}\left(1-\sqrt{2}\right)-\sqrt{3}\left(1-\sqrt{2}\right)}=\frac{\left(2\sqrt{5}-\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{5}-\sqrt{3}\right)\left(1-\sqrt{2}\right)}=\frac{\sqrt{3}-\sqrt{2}}{1-\sqrt{2}}\)

c) \(\frac{x+\sqrt{xy}}{y+\sqrt{xy}}=\frac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}}{\sqrt{y}}\) (Bạn tự thêm đk)

d) \(\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{ab}-1}\) (Bạn tự thêm đk)

Ta có: \(C=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

Ta có: \(B=\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\)

\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{8-2\sqrt{15}}+2\sqrt{5}}{3\sqrt{5}-1}\)

\(=\dfrac{\sqrt{3}-1+\sqrt{5}-\sqrt{3}+2\sqrt{5}}{3\sqrt{5}-1}\)

=1

13 tháng 7 2016

a) \(\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\(=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{ab}-1}\)

b) \(\frac{x+\sqrt{xy}}{y+\sqrt{xy}}=\frac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}=\sqrt{\frac{x}{y}}\)

c) \(\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\frac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\sqrt{\frac{3}{7}}\)

d) \(\frac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}=\frac{2\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\sqrt{5}\left(\sqrt{1}-\sqrt{2}\right)-\sqrt{3}\left(1-\sqrt{2}\right)}\)

\(=\frac{\left(2\sqrt{5}-\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{5}-\sqrt{3}\right)\left(1-\sqrt{2}\right)}=\frac{\sqrt{3}-\sqrt{2}}{1-\sqrt{2}}\)

e) \(\frac{-3\sqrt{3}+3}{2\sqrt{3}-2}=\frac{-3\left(\sqrt{3}-1\right)}{2\left(\sqrt{3}-1\right)}=-\frac{3}{2}\)

25 tháng 7 2019
https://i.imgur.com/zP7lFrE.jpg
25 tháng 7 2019

Cảm ơn bạn nhiều !!!