K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2019

b, \(\sqrt{3x+7}-\sqrt{x+1}=2\)

\(\Rightarrow\sqrt{3x+7}=\sqrt{x+1}+2\)

\(\Rightarrow3x+7=\left(\sqrt{x+1}+2\right)^2\)

\(\Rightarrow3x+7=x+1+4\sqrt{x+1}+4\)

\(\Rightarrow2x+2=4\sqrt{x+1}\)

\(\Rightarrow\left(x+1\right)-2\sqrt{x+1}=0\)

\(\Rightarrow\sqrt{x+1}\left(\sqrt{x+1-2}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+1}=0\\\sqrt{x+1}-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

Câu a dài ngại làm :))

NV
21 tháng 11 2019

a/ ĐKXĐ: ...

Đặt \(\sqrt{-x^2+11x-24}=a\ge0\) pt trở thành:

\(a=a^2-2\Leftrightarrow a^2-a-2=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\)

\(\Rightarrow\sqrt{-x^2+11x-24}=2\)

\(\Leftrightarrow-x^2+11x-28=0\Rightarrow\left[{}\begin{matrix}x=7\\x=4\end{matrix}\right.\)

5 tháng 2 2020

Chúng ta có nhận xét: \(\left(2x-1\right)\left(5-x\right)=-2x^2+11x-5\)

ĐK: \(\hept{\begin{cases}2x-1\ge0\\5-x\ge0\end{cases}\Leftrightarrow}\frac{1}{2}\le x\le5\)(1)

Với những bài có nhận xét như trên. Thì hầu như chúng ta sẽ làm như sau:

 Đăt \(\sqrt{2x-1}+\sqrt{5-x}=t\)\(t\ge0\))

<=> \(2x-1+5-x+2\sqrt{-2x^2+11x-5}=t^2\)( bình phương hai vế )

<=> \(x+4+2\sqrt{-2x^2+11x-5}=t^2\)

<=> \(x+2\sqrt{-2x^2+11x-5}=t^2-4\)

<=> \(x-2+2\sqrt{-2x^2+11x-5}=t^2-6\)

Phương trình ban đầu trở thành:

\(t=t^2-6\)với \(t\ge0\)

<=> \(t^2-t-6=0\)

<=> \(\orbr{\begin{cases}t=3\\t=-2\left(loai\right)\end{cases}}\)

Với t = 3 ta có:

\(\sqrt{2x-1}+\sqrt{5-x}=3\)

<=> \(x+4+2\sqrt{\left(2x-1\right)\left(5-x\right)}=9\)

<=> \(2\sqrt{\left(2x-1\right)\left(5-x\right)}=5-x\)

<=> \(\orbr{\begin{cases}5-x=0\\2\sqrt{2x-1}=\sqrt{5-x}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=5\\4\left(2x-1\right)=5-x\end{cases}}\)

<=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)( thỏa mãn đk (1))

Vậy:...

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Bình phương hai vế của phương trình đã cho, ta được:

\(\begin{array}{l}\sqrt {31{x^2} - 58x + 1}  = \sqrt {10{x^2} - 11x - 19} \\ \Rightarrow 31{x^2} - 58x + 1 = 10{x^2} - 11x - 19\\ \Rightarrow 21{x^2} - 47x + 20 = 0\end{array}\)

\( \Rightarrow x = \frac{5}{3}\) hoặc \(x = \frac{4}{7}\)

Thay lần lượt các nghiệm trên vào phương trình đã cho, ta thấy không có nghiệm nào thỏa mãn

Vậy phương trình đã cho vô nghiệm

Chú ý khi giải: sau khi bình phương hai vế thì các bước giải tiếp theo chỉ được sử dụng dấu suy ra không được sử dụng dấu tương đương (vì tập nghiệm của chúng có thể không giống nhau)