K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2019

Ta có: \(A=\frac{\left(1+\frac{2017}{1}\right)\left(1+\frac{2017}{2}\right)...\left(1+\frac{2017}{1009}\right)}{\left(1+\frac{1009}{1}\right)\left(1+\frac{1009}{2}\right)...\left(1+\frac{1009}{2017}\right)}=\frac{\frac{2017+1}{1}\frac{2017+2}{2}...\frac{2017+1009}{1009}}{\frac{1009+1}{1}\frac{1009+2}{2}...\frac{1009+2017}{2017}}\)

\(\Leftrightarrow A=\frac{\frac{2018.2019...3026}{1.2...1009}}{\frac{1010.1011...3026}{1.2...2017}}=\frac{2018.2019...3026}{1.2...1009}.\frac{1.2...2017}{1010.1011...3026}\)

\(\Leftrightarrow A=\frac{1.2...2017.2018.2019...3026}{1.2...1009.1010.1011...3026}=\frac{1.2.3...3026}{1.2.3...3026}=1.\)

24 tháng 10 2016

tr`

pái bn lun đó đỗ văn thành

tự đăng tự giải

haizzz

25 tháng 10 2016

1

tick mình nha thank

30 tháng 3 2019

\(2018\cdot\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019\cdot\left(\frac{1}{2017}-2\right)=\frac{2018}{2017}-4038-\frac{2019}{2017}+4038\)

\(=\frac{2018}{2017}-\frac{2019}{2017}=-\frac{1}{2017}\)

25 tháng 1 2020

Ta có : \(2018.\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019.\left(\frac{1}{2017}-2\right)=\frac{2018}{2017}-2019.2-\frac{2019}{2017}+2019.2\)

\(=\frac{2018}{2017}-\frac{2019}{2017}=-\frac{1}{2017}\)

25 tháng 1 2020

\(2018.\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019.\left(\frac{1}{2017}-2\right)\)

\(=\frac{2018}{2017}-2018.\frac{2019}{1009}-\frac{2019}{2017}+2019.2\)

\(=\frac{2018}{2017}-2.2019-\frac{2019}{2017}+2.2019\)

\(=\frac{2018}{2017}-\frac{2019}{2017}=-\frac{1}{2017}\)

18 tháng 12 2018

\(\text{đặt}k=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)

\(K=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

\(K=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1008}\right)\)

\(K=\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+....+\frac{1}{2017}\Rightarrow A=1\)

14 tháng 5 2016

Đặt \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2015}-\frac{1}{2016}\)

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)

\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{1008}\right)\)

\(A=\frac{1}{1009}+\frac{1}{1010}+.....+\frac{1}{2016}\)

Khi đó  \(\frac{\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\right)}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{A}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=1\)
 

14 tháng 5 2016

Bạn xem lời giải của mình nhé:

Giải:

Bài 2:

Ta xét A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(=1+\left(\frac{1}{2}-1\right)+\frac{1}{3}+\left(\frac{1}{4}-\frac{2}{4}\right)+...+\frac{1}{2015}+\left(\frac{1}{2016}-\frac{2}{2016}\right)\\ =1+\frac{1}{2}-1+\frac{1}{3}+\frac{1}{4}-\frac{1}{2}+...+\frac{1}{2015}+\frac{1}{2016}-\frac{1}{1008}\)

\(=\left(1-1\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{1008}-\frac{1}{1008}\right)+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)

\(=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)

 \(\Rightarrow\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =1\)

Chúc bạn học tốt!hihi

27 tháng 2 2018

Ta có : 

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{99^2}{99.100}\)

\(=\)\(\frac{1^2.2^2.3^2.....99^2}{1.2.2.3.3.4.....99.100}\)

\(=\)\(\frac{1^2.2^2.3^2.....99^2}{1^2.2^2.3^2.4^2.....99^2}.\frac{1}{100}\)

\(=\)\(\frac{1}{100}\)

23 tháng 5 2017

\(A=1\)

10 tháng 2 2019

Kết quả =1