K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2019

a,{\displaystyle (a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2ab+2bc-2ca\,}

b,{\displaystyle (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2ab+2bc+2ca\,}

24 tháng 6 2019

a,{\displaystyle (a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2ab+2bc-2ca\,}

b,{\displaystyle (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2ab+2bc+2ca\,}

5:

a: (2x-5)(2x+5)=4x^2-25

b: (3x-5y)(3x+5y)=9x^2-25y^2

c: (3x+7y)(3x-7y)=9x^2-49y^2

d: (2x-1)(2x+1)=4x^2-1

4:

a: 2003*2005=(2004-1)(2004+1)=2004^2-1<2004^2

b: 8(7^2+1)(7^4+1)(7^8+1)

=1/6*(7-1)(7+1)(7^2+1)(7^4+1)(7^8+1)

=1/6(7^2-1)(7^2+1)(7^4+1)(7^8+1)

=1/6(7^16-1)<7^16-1

28 tháng 7 2023

5:

a: (2x-5)(2x+5)=4x^2-25

b: (3x-5y)(3x+5y)=9x^2-25y^2

c: (3x+7y)(3x-7y)=9x^2-49y^2

d: (2x-1)(2x+1)=4x^2-1

mik chỉ biết bài 5 thôi !

HQ
Hà Quang Minh
Giáo viên
3 tháng 8 2023

\(a,\left(x+2\right)^2=x^2+4x+4\\ b,\left(x-1\right)^2=x^2-2x+1\\ c,\left(x^2+y^2\right)^2=x^4+2x^2y^2+y^4\)

3 tháng 8 2023

a) = x2 + 4x + 4

b) = x2 - 2x + 1

c) x4 + 2x2y2 + y4

9 tháng 8 2021

Ta có:(a2+ab+b2)(a2-ab+b2)-(a4+b4)

    =   (a2+b2)2-a2b2-a4-b4=a4+2a2b2+b4-a2b2-a4-b4=a2b2

9 tháng 8 2021

Ta có:(a2+ab+b2)(a2-ab+b2)-(a4+b4)

    =   (a2+b2)2-a2b2-a4-b4=a4+2a2b2+b4-a2b2-a4-b4=a2b2

15 tháng 10 2021

Chọn B

15 tháng 10 2021

B

8 tháng 9 2021

(a+b+c)(a+b-c)

=[(a+b) + c] [ (a+b) - c]

= (a+b)2 - c2

Áp dụng HĐT: (A-B)(A+B) = A2 - B2

8 tháng 9 2021

(a+b+c).(a+b-c)

=( a+b )^2  - c^2

= a^2 + 2ab + b^2 - c^2

18 tháng 10 2021

\(a,=x^2+4x+4\\ b,=x^3+3x^2+3x+1\\ c,=\left(x-3\right)\left(x+3\right)\)

18 tháng 10 2021

a,\(\left(x+2\right)^2=x^2+2.x.2+2^2=x^2+4x+4\)

b, \(\left(x+1\right)^3=x^3+3.x^2.1+3.x.1^2+1^3=x^3+3x^2+3x+1\)

c,\(x^2-3^2=\left(x-3\right).\left(x+3\right)\)

23 tháng 10 2023

a) \((a+y)^3=a^3+3a^2y+3ay^2+y^3\)

b) \((x-b)^3=x^3-3x^2b+3xb^2-b^3\)

26 tháng 8 2017

a) \(\left(2x-3y\right)^2=4x^2-12xy+9y^2\)

b) \(\left(5p-q\right)^2=25p^2-10pq+q^2\)

c) \(\left(-a-b\right)^2=-a^2-2ab-b^2\)

d) \(\left(1+3s\right)^2=1+6s+9s^2\)

e) \(\left(a^2b+2b\right)^2=a^4b^2+4a^2b^2+4b^2\)

f) \(\left(3u-v\right)^3=27u^3-27u^2v+9uv^2-v^3\)

26 tháng 8 2017

a,\(\left(2x-3y\right)=\left(2x\right)^2-2.2x.3y+\left(3y\right)^2\)

=\(4x^2-12xy+6y^2\)

b,\(\left(5p-q\right)^2=\left(5p\right)^2-2.5p.q+q^2\)

=\(25p^2-10pq+q^2\)

c,(-a-b)\(^2=\left(-a\right)^2-2.\left(-a\right).b+b^2\)

=\(a^2+2ab+b^2\)

d,\(\left(1+3s\right)^2=1+6s+9s^2\)

e,(a\(^2b+2b)^2=(a^2b)^2+2.a^2b.2b^2+\left(2b\right)^2\)

=\(a^4b^2+4a^2b^2+4b^2\)

f,\(\left(3u-v\right)^3=27u^3-27u^2v+9uv^2-v^3\)

21 tháng 7 2018

1) \(\left[\left(a+b\right)-c\right]^2=\left(a+b\right)^2-2c\left(a+b\right)+c^2\)

\(=\left(a^2+2ab+b^2\right)-2ac-2bc+c^2\)

\(=a^2+b^2+c^2+2ab-2ac-2bc\)

2)Phần này tg tự

3)\(\left(x+y+z\right)\left(x+y-z\right)=\left(x+y\right)^2-z^2=x^2+2xy+y^2-z^2\)