Cho x,y,z là các số chính phương thỏa mãn : x2 +y2=z2.Chứng minh rằng xyz chia hết cho 60
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
DT
1
ND
1
4 tháng 10 2023
Do 1 số chính phương khi chia cho 3 chỉ có thể có số dư là 0 hoặc 1 nên nếu \(x,y⋮̸3\) thì \(z^2=x^2+y^2\equiv1+1\equiv2\left[3\right]\), vô lí. Vậy trong 2 số x, y phải tồn tại 1 số chia hết cho 3.
Tương tự, một số chính phương khi chia cho 4 chỉ có thể có số dư là 0 hoặc 1 nên nếu \(x,y⋮̸4\) thì \(z^2=x^2+y^2\equiv1+1\equiv2\left[4\right]\), vô lí. Vậy trong 2 số x, y phải có 1 số chia hết cho 4.
Từ 2 điều trên, kết hợp với \(\left(4,3\right)=1\), thu được \(xy⋮3.4=12\). Ta có đpcm.
NT
0
NT
0