K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 9 2020

Chắc là toàn vecto???

a/ \(=\left(\overrightarrow{EA}+\overrightarrow{AB}\right)+\left(\overrightarrow{BC}+\overrightarrow{CD}\right)=\overrightarrow{EB}+\overrightarrow{BD}=\overrightarrow{ED}\)

b/ \(=\left(\overrightarrow{AB}+\overrightarrow{BC}\right)+\overrightarrow{CD}+\left(\overrightarrow{DF}+\overrightarrow{FE}\right)\)

\(=\overrightarrow{AC}+\overrightarrow{CD}+\overrightarrow{DE}=\overrightarrow{AD}+\overrightarrow{DE}=\overrightarrow{AE}\)

29 tháng 5 2018

Giải bài 13 trang 74 Toán 8 Tập 1 | Giải bài tập Toán 8

Do ABCD là hình thang cân nên:

    AD = BC;

    AC = BD;

Xét hai tam giác ADC và BCD, ta có:

    AD = BC (gt)

    AC = BD (gt)

    DC cạnh chung

⇒ ΔADC = ΔBCD (c.c.c)

Giải bài 13 trang 74 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ΔECD cân tại E

⇒ EC = ED.

Mà AC = BD

⇒ AC – EC = BD – ED

hay EA = EB.

Vậy EA = EB, EC = ED.

1 tháng 3 2019

ta có : góc CAB=1/2 sđ cung CB

góc CDB = 1/2 sđ cung CB

-> góc CAB= góc CDB

ta lại có : góc ACD =1/2 sđ cung AD

góc ABD =1/2 sđ cung AD

-> góc ACD = góc ABD

xét tam giác EAC và EDB có;

góc EAC=góc EDB( CMT)

góc ACE= góc DBE(cmt)

-> 2 tam giác đồng dạng theo trường hợp g.g

-> EA/EC=ED/EB

-> EA.EB=EC.ED

22 tháng 6 2018

Do ABCD là hình thang cân nên AD = BC, AC = BC, 
Xét hai tam giác ADC và BCD, ta có: 
         AD = BC (gt)
        AC = BD (gt)
         DC chung
Nên  ∆ADC =  ∆BCD (c.c.c)
Suy ra 
Do đó tam giác ECD cân tại E, nên EC = ED
Ta lại có: AC = BD suy ra EA = EB
Chú ý: Ngoài cách chứng minh  ∆ADC =  ∆BCD (c.c.c) ta còn có thể chứng minh  ∆ADC =  ∆BCD (c.g.c) như sau:
AD = BC,  , DC là cạnh chung.

30 tháng 12 2018

Do ABCD là hình thang cân nên:

    AD = BC;

    AC = BD;

Xét hai tam giác ADC và BCD, ta có:

    AD = BC (gt)

    AC = BD (gt)

    DC cạnh chung

⇒ ΔADC = ΔBCD (c.c.c)

Giải bài 13 trang 74 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ΔECD cân tại E

⇒ EC = ED.

Mà AC = BD

⇒ AC – EC = BD – ED

hay EA = EB.

Vậy EA = EB, EC = ED.