Phân tích thành nhân từ
3+2x (x<0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(=\left(x^2+x\right)^2-2\left(x^2+x\right)+1-16\\ =\left(x^2+x-1\right)^2-16\\ =\left(x^2+x-1-4\right)\left(x^2+x-1+4\right)\\ =\left(x^2+x-5\right)\left(x^2+x+3\right)\)
#)Giải :
\(x^3-2x-4\)
\(=x^3+2x^2-2x^2+2x-4x-4\)
\(=x^3+2x^2+2x-2x^2-4x-4\)
\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(x^4+2x^3+5x^2+4x-12\)
\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)
\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
Câu 1.
Đoán được nghiệm là 2.Ta giải như sau:
\(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
=(x2 -4x2)-((x2-2x)(x+2))
=(x2-4x2)-(x3+2x2-2x2-4x)
=x2-4x2-x3+4x
=-x3-3x2+4x=-x(x2+3x-4)
\(\left(x-2x\right)\left(x+2x\right)-x\left(x-2\right)\left(x+2\right)\)
\(=x^2-4x^2-x\left(x^2-4\right)\)
\(=x^2-4x^2-x^3+4x\)
\(=x^2-x^3-4x^2+4x\)
\(=x^2\left(x-1\right)-4x\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-4x\right)\)
\(=x\left(x-1\right)\left(x-4\right)\)
Sửa đề: x³ + 6x² + 11x + 66
= (x³ + 6x²) + (11x + 66)
= x²(x + 6) + 11(x + 6)
= (x + 6)(x + 11)
--------------------
x³ - 2x² + x - xy²
= x(x² - 2x + 1 - y²)
= x[(x² - 2x + 1) - y²]
= x[(x - 1)² - y²]
= x(x - y - 1)(x + y - 1)
--------------------
xy² - x³ + 2x² - x
= x(y² - x² + 2x - 1)
= x[y² - (x² - 2x + 1)]
= x[y² - (x - 1)²]
= x(y - x + 1)(y + x - 1)
\(x^6+2x^5+x^4-2x^3-2x^2+1=\left(x^3+x^2-1\right)^2\)
\(=x^3+x^2+x^2+x+x+1=x^2\left(x+1\right)+x\left(x+1\right)+x+1\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
x3 + 2x2 + 2x + 1
= (x3 + 1) + (2x2 + 2x)
= (x + 1)(x2 + x + 1) + 2x(x + 1)
= (x + 1)(x2 + x + 1 + 2x)
= (x + 1)(x2 + 3x + 1)
Chúc bạn học tốt