tìm số tữ nhiên x thỏa mãn :
1+3+5+.....+x=2601
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x chia hết cho 5 suy ra x là BCNN(5)
5=5
=> B(5): { 0,5,10,15,20,25,30,35,40,45,50,55,...........,705,800...}
mà x thuộc N, 700<x<800
Vây x= 705
Ước nguyên dương của 6=(1,2,3,6)
Với x-1=1 và y-3=6
=>x=2,y=9(T/m)
Với x-1=6,y-3=1
=>x=7,y=4(T/m)
Với x-1=2,y-3=3
=>x=3,y=6(T/m)
Với x-1=3,y-3=2
=>x=4,y=5(T/m)
Vậy các cặp số tự nhiên x,y thỏa mãn là (2,9;7,4;3,6;4,5)
\(\Rightarrow\left(x-1\right),\left(y-3\right)\inƯ\left(6\right)=\left\{1;2;3;6\right\}\)
Lập bảng:
x-1 | 1 | 2 | 3 | 6 |
x | 2 | 3 | 4 | 7 |
y-3 | 6 | 3 | 2 | 1 |
y | 9 | 6 | 5 | 4 |
=> Tất cả các cặp thoả mãn. Vậy các cặp (x;y) thoả mãn là: (2;9); (3;6); (4;5); (7;4)
Xét trên tập số tự nhiên
- Với \(y=0\Rightarrow\) ko tồn tại x thỏa mãn
- Với \(y=1\Rightarrow\) ko tồn tại x thỏa mãn
- Với \(y=2\Rightarrow x=1\)
- Với \(y\ge2\Rightarrow2^y⋮8\)
\(\Rightarrow5^x-1⋮8\)
Nếu \(x\) lẻ \(\Rightarrow x=2k+1\Rightarrow5^x=5.25^k\equiv5\left(mod8\right)\) \(\Rightarrow5^x-1\equiv4\left(mod8\right)\) ko chia hết cho 8 (ktm)
\(\Rightarrow x\) chẵn \(\Rightarrow x=2k\)
\(\Rightarrow5^x=5^{2k}=25^k\equiv1\left(mod3\right)\)
\(\Rightarrow5^x-1\equiv0\left(mod3\right)\Rightarrow5^x-1⋮3\Rightarrow2^y⋮3\) (vô lý)
Vậy với \(y\ge3\) ko tồn tại x;y thỏa mãn
Có đúng 1 cặp thỏa mãn là \(\left(x;y\right)=\left(1;2\right)\)
\(5^x-2^y=1\left(a\right)\left(x;y\in N\right)\)
Ta thấy với \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\) thì \(\left(a\right)\) thỏa mãn
\(\left(a\right)\Leftrightarrow5^x-1=2^y\)
Với \(y\ge3\left(y\in N\right)\)
\(\Rightarrow5^x-1=2^y⋮8\left(b\right)\)
- Nếu \(x=2k\left(k\in N\right)\) (x là số chẵn)
\(\Rightarrow5^x-1=25^k-1⋮3\left(25^k\equiv1\left(mod3\right)\Rightarrow25^k-1\equiv0\left(mod3\right)\right)\)
\(\Rightarrow\left(b\right)\) không thỏa mãn
- Nếu \(x=2k+1\left(k\in N\right)\) (x là số lẻ)
\(\Rightarrow5^x-1=5.25^k-1\equiv4\left(mod8\right)\left(5.25^k\equiv5\left(mod8\right)\right)\)
Nên với \(y\ge3\) không tồn tại \(\left(x;y\right)\) thỏa mãn \(\left(a\right)\)
Vậy có đúng 1 cặp nghiệm \(\left(x;y\right)=\left(1;2\right)\) thỏa mãn đề bài
Từ 1 đến x có số số hạng là :
(x - 1) : 2 + 1 =\(\frac{x-1}{2}+1=\frac{x}{2}-\frac{1}{2}+1=\frac{x}{2}+\frac{1}{2}=\frac{x+1}{2}\)
Trung bình cộng của tổng là :
(x + 1) : 2= \(\frac{x+1}{2}\)
=> Tổng là : 1 + 3 + 5 + ... + x = \(\frac{x+1}{2}.\frac{x+1}{2}\)= 2601
=> \(\left(\frac{x+1}{2}\right)^2=2601\)
=> \(\left(\frac{x+1}{2}\right)^2=51^2\)
Vì \(x\inℕ\Rightarrow\frac{x+1}{2}\inℕ\)
=> \(\frac{x+1}{2}=51\)
=> x + 1 : 2 = 51
=> x + 1 = 51 . 2
=> x + 1 = 102
=> x = 102 - 1
=> x = 101