Cho tan x - cot x = 3 . Hãy tính giá trị của biểu thức sau :
a) A = tan2x + cot2x
b) B = tan x + cot x
c) C = tan4x - cot4x
Các bạn giải gấp cho mình bài này nha . Mình đang cần rất gấp bạn nào giải đúng mình tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\tan10.\tan11......\)
\(=\left(\tan10.tan80\right)\left(tan11.tan79\right)....\left(tan44.tan46\right).tan45\)
Mà 10 và 80, 11 và 79, ... là các góc phụ nhau .
\(=tan10.cot10....tan45=1\)
b, Ta có : \(\tan x+\cot x=2\)
\(\Rightarrow\tan^2x+2\tan x\cot x+\cot^2x=4\)
\(\Rightarrow\tan^2x+\cot^2x=4-2=2\)
Ta có : \(\tan^3x+\cot^3x=\left(\tan x+\cot x\right)\left(\tan^2x-\tan x\cot x+\cot^2x\right)=2\)
\(=cot^2x\left(cos^2x-1\right)+cos^2x+4\left(sin^2x+cos^2x\right)\)
\(=\frac{cos^2x}{sin^2x}\left(-sin^2x\right)+cos^2x+4\)
\(=-cos^2x+cos^2x+4=4\)
Khỏi tick
Có \(\sin^2x+\cos^2x=1\Rightarrow\sin^2x-\cos^2x=1-2\cos^2x\)
\(\Rightarrow VT=\frac{\sin^2x-\cos^2x}{\sin^2x.\cos^2x}=\frac{\sin^4x-\cos^4x}{\sin^2x.\cos^2x}=\frac{\sin^2x}{\cos^2x}-\frac{\cos^2x}{\sin^2x}=\tan^2x-\cot^2x=VP\)
\(tana-cota=2\sqrt{3}\Rightarrow\left(tana-cota\right)^2=12\)
\(\Rightarrow\left(tana+cota\right)^2-4=12\Rightarrow\left(tana+cota\right)^2=16\)
\(\Rightarrow P=4\)
\(sinx+cosx=\dfrac{1}{5}\Rightarrow\left(sinx+cosx\right)^2=\dfrac{1}{25}\)
\(\Rightarrow1+2sinx.cosx=\dfrac{1}{25}\Rightarrow sinx.cosx=-\dfrac{12}{25}\)
\(P=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}=\dfrac{sin^2x+cos^2x}{sinx.cosx}=\dfrac{1}{sinx.cosx}=\dfrac{1}{-\dfrac{12}{25}}=-\dfrac{25}{12}\)
\(\left(tanx-cotx\right)^2=9\Rightarrow tan^2x+cot^2x-2=9\Rightarrow tan^2x+cot^2x=11\)
\(tan^2x+cot^2x+2=13\Rightarrow\left(tanx+cotx\right)^2=13\Rightarrow tanx+cotx=\pm\sqrt{13}\)
\(tan^4x-cot^4x=\left(tan^2x+cot^2x\right)\left(tan^2x-cot^2x\right)\)
\(=\left(tan^2x+cot^2x\right)\left(tanx-cotx\right)\left(tanx+cotx\right)\)
\(=11.3.\left(\pm\sqrt{13}\right)=\pm33\sqrt{13}\)