Tìm x , biết :
\(\frac{x-3}{6}=\frac{2}{x-4}\)( với x thuộc Z )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)=\frac{4}{3}.\frac{-1}{3}=\frac{-4}{9}\)
k nha
a; \(\dfrac{-x}{4}\) = \(\dfrac{-2}{x}\)
-\(x.x\) = -2.4
-\(x^2\) = -8
\(x^2\) = 8
\(\left[{}\begin{matrix}x=-\sqrt{8}\\x=\sqrt{8}\end{matrix}\right.\)
Vậy \(x\in\) {-\(\sqrt{8}\); \(\sqrt{8}\)}
a)ta có xy=7*9=7*3*3
vậy x =9;21 , y=7;3
b) xy=-2*5
mà x<0<y
nên x=-2 ,y=5
c)x-y=5 hay x=y+5
\(\frac{y+5+4}{y-5}=\frac{4}{3}\Rightarrow3y+27=4y-20\Rightarrow y=47\Rightarrow x=52\)
\(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)
\(x-\frac{5}{6}+x-x=-\frac{2}{3}\)
\(x=\frac{-2}{3}+\frac{5}{6}\)
\(x=\frac{-4}{6}+\frac{5}{6}\)
\(x=\frac{1}{6}\)
\(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)
\(x-\frac{5}{6}+x=x-\frac{2}{3}\)
\(\Rightarrow x+x-\frac{5}{6}=x-\frac{2}{3}\Rightarrow x+x-x=-\frac{2}{3}+\frac{5}{6}\)
\(\Rightarrow x=\frac{1}{6}\Rightarrow\)x ko tồn tại
\(A=\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right)\div\left(\frac{x^2-2x}{x^3-x^2+x}\right)\)
a) ĐKXĐ : \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)
\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right)\div\left(\frac{x\left(x-2\right)}{x\left(x^2-x+1\right)}\right)\)
\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right)\div\frac{x-2}{x^2-x+1}\)
\(=\left(\frac{x+1+x+1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}\right)\times\frac{x^2-x+1}{x-2}\)
\(=\frac{-2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}\times\frac{x^2-x+1}{x-2}\)
\(=\frac{-2x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{-2x}{x+1}\)
b) \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)
<=> \(\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\left(loai\right)\\x=-\frac{1}{2}\left(nhan\right)\end{cases}}\)
Với x = -1/2 => \(A=\frac{-2\cdot\left(-\frac{1}{2}\right)}{-\frac{1}{2}+1}=2\)
c) Để A ∈ Z thì \(\frac{-2x}{x+1}\)∈ Z
=> -2x ⋮ x + 1
=> -2x - 2 + 2 ⋮ x + 1
=> -2( x + 1 ) + 2 ⋮ x + 1
Vì -2( x + 1 ) ⋮ ( x + 1 )
=> 2 ⋮ x + 1
=> x + 1 ∈ Ư(2) = { ±1 ; ±2 }
x+1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Các giá trị trên đều tm \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)
Vậy x ∈ { -3 ; -2 ; 0 ; 1 }
Bài 2 :x+1/3=x-3/4 <=>4.(x+1)=3.(x-3) 4x+4=3x-9 4x-3x=-9-4 x=-13
Bài 1:
ta có: \(\frac{17}{x+1}.\frac{x}{6}=\frac{17x}{6x+6}\)
Để 17x/6x+6 thuộc Z
=> 17x chia hết cho 6x + 6
=> 102x chia hết cho 6x + 6
102x + 102 - 102 chia hết cho 6x + 6
17.(6x+6) - 102 chia hết cho 6x+6
mà 17.(6x+6) chia hết cho 6x + 6
=> 102 chia hết cho 6x + 6
=> ...
bn tự lm típ nha!
Bài 2:
ta có: \(\frac{x+1}{3}=\frac{x-3}{4}\)
\(\Rightarrow4x+4=3x-9\)
\(\Rightarrow4x-3x=-9-4\)
\(x=-13\)
a) Điều kiện : \(x\ne2;x\ne3\)
\(B=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)
\(=\frac{2x-9-\left(x-3\right)\left(x+3\right)+2\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)
b) Điều kiện \(x\in Z;x\ne2;x\ne3\)
Có \(B=\frac{x+4}{x-3}\in Z\), mà x+4 và x-3 nguyên do x nguyên, nên
\(x+4⋮x-3\Leftrightarrow7⋮x-3\), do đó \(x-3\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\Rightarrow x\in\left\{4;10;2;-4\right\}\)
mà do x khác 2 (điều kiện) nên ta kết luận \(x\in\left\{4;10;-4\right\}\)
Ta có: \(\frac{x-3}{6}=\frac{2}{x-4}\Leftrightarrow\left(x-3\right)\left(x-4\right)=6.2=12\)( 1 )
Do \(x\in Z\Rightarrow\hept{\begin{cases}x-3\in Z\\x-4\in Z\end{cases}}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\left(x-3\right).\left(x-4\right)=3.4\Leftrightarrow x-3=4\Leftrightarrow x=7.\)
Một cách khác.
x - 3/6 = 2/x - 4
<=> (x - 3).(x - 4) = 2.6
<=> x^2 - 7x + 12 = 12
<=> x^2 - 7x = 12 - 12
<=> x^2 - 7x = 0
<=> x(x - 7) = 0
<=> x = 0 hoặc x - 7 = 0
x = 0 + 7
x = 7
=> x = 0 hoặc 7