tìm x biết : \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(2\left(x-\sqrt{12}\right)^2=6\Rightarrow\left(x-\sqrt{12}\right)^2=3\)
TH1l \(x-\sqrt{12}=\sqrt{3}\Rightarrow x=\sqrt{3}+\sqrt{12}=3\sqrt{3}\)
TH2: \(x-\sqrt{12}=-\sqrt{3}\Rightarrow x=-\sqrt{3}+\sqrt{12}=\sqrt{3}\)
b) \(2x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\2\sqrt{x}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}\)
c) \(|2x+\sqrt{\frac{9}{16}}|-x=\left(\frac{1}{\sqrt{2}}\right)^2\Leftrightarrow\left|2x+\frac{3}{4}\right|-x=\frac{1}{2}\)
TH1: \(2x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{8}\)
Ta có \(2x+\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow x=-\frac{1}{4}\left(tm\right)\)
TH2: \(x< -\frac{3}{8}\)
Ta có \(-2x-\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow-3x=\frac{5}{4}\Leftrightarrow x=-\frac{5}{12}\left(tm\right)\)
Bài 2: Để \(A=\frac{2\sqrt{x}+3}{\sqrt{x}-2}\) là số nguyên thì \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\)
Ta có \(\frac{2\left(\sqrt{x}-2\right)+7}{\sqrt{x}-2}=2+\frac{7}{\sqrt{x}-2}\)
Để \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\) thì \(\frac{7}{\sqrt{x}-2}\in Z\Rightarrow\sqrt{x}-2\inƯ\left(7\right)\)
Do \(\sqrt{x}-2\ge-2\Rightarrow\sqrt{x}-2\in\left\{-1;1;7\right\}\)
\(\Rightarrow x\in\left\{1;9;81\right\}\)
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
\(\Leftrightarrow\sqrt{2x-3}=2\sqrt{x-1}\left(x\ne\frac{3}{2};x\ne1\right)\)
\(\Leftrightarrow\left(\sqrt{2x-3}\right)^2=\left(2\sqrt{x-1}\right)^2\)
\(\Leftrightarrow2x-3=4\left(x-1\right)\)
\(\Leftrightarrow2x-3=4x-4\)
\(\Leftrightarrow4x-2x=-3+4\)
\(\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)( thỏa mãn )
Không biết có sai đâu k nữa....bn nhớ xem lại nhá
\(\frac{\sqrt{2x-1}}{\sqrt{x-1}}=2\)
\(đkxđ\Leftrightarrow\)\(\hept{\begin{cases}2x-1\ge0\\x-1\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ge1\end{cases}\Rightarrow}x\ge1}\)
Mà \(\sqrt{x-1}\ne0\Rightarrow x-1\ne0\Rightarrow x\ne1\)
\(\Rightarrowđkxđ\)của đa thức là \(x>1\)
\(\frac{\sqrt{2x-1}}{\sqrt{x-1}}=2\)\(\Rightarrow\left(\frac{\sqrt{2x-1}}{\sqrt{x-1}}\right)^2=4\)
\(\Rightarrow\frac{|2x-1|}{|x-1|}=4\)
......