Cho tam giác ABC vuông tại B có AB = 5cm, BC = 12 cm. Trên tia đối của tia BA lấy điểm D sao cho BD = BA, trên cạnh BC lấy điểm E sao cho BE = 4cm
a. Tính AC
b. Chứng minh rằng: tam giác EAD cân
c. Tia AE cắt DC tại K. Chứng minh rằng : K là trung điểm của BC
d. Chứng minh rằng : AD < 4EK
Giúp mình nha mình đang cần gấp!
a ) Áp dụng định lí Py-ta-go vào tam giác vuông ABC có :
\(AB^2+BC^2=AC^2\)
\(5^2+12^2=AC^2\)
\(169=AC^2\)
\(\Rightarrow AC=\sqrt{169}=13\left(cm\right)\)
Vậy AC = 13 cm
b ) Ta có : \(\widehat{EBA}+\widehat{EBD}=180^o\)
\(90^o+\widehat{EBD}=180^o\)
\(\Rightarrow\widehat{EBD}=180^o-90^o=90^o\)
Xét \(\Delta EBA\) và \(\Delta EBD\) có :
BA = BD ( gt )
\(\widehat{EBA}=\widehat{EBD}\left(=90^o\right)\)
BE là cạnh chung
nên \(\Delta EBA=\Delta EBD\left(c.g.c\right)\)
=> EA = ED ( hai cạnh tương ứng )
=> \(\Delta EAD\) cân tại E
A) Áp dụng định lý Py-ta-go ta có :
AC^2 = AB ^2+ BC^2
=>√AC = 25+144
=> AC = 13
b)Xét tam giác AEB và Tam giác DEB cùng vuông tại B ta có :
AB = BD
BE chung
=> tam giác AEB = tam giác DEB(2 cạch góc vuông)
=> AE = ED (2 cạnh tương ứng)
=> Tam giác AED cân tại E