C/minh bất đẳng thức sau:
\(a+b>4\) với \(a,b>0\) và \(a+b< ab\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với $a,b,c>0$ thì $a^3+b^3+3abc> ab(a+b+c)$ chứ không có dấu "=" nhé bạn. Còn về cách làm thì bạn Trương Huy Hoàng đã làm rất chi tiết rồi.
a3 + b3 + 3abc \(\ge\) ab(a + b + c)
\(\Leftrightarrow\) a3 + b3 + 3abc - a2b - ab2 - abc \(\ge\) 0
\(\Leftrightarrow\) a3 + b3 + 2abc - a2b - ab2 \(\ge\) 0
\(\Leftrightarrow\) a2(a - b) - b2(a - b) + 2abc \(\ge\) 0
\(\Leftrightarrow\) (a - b)(a2 - b2) + 2abc \(\ge\) 0
\(\Leftrightarrow\) (a - b)2(a + b) + 2abc \(\ge\) 0 (luôn đúng với mọi a, b, c > 0)
Chúc bn học tốt!
b)Theo BĐT Côsi:
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\left(\frac{ab}{c}.\frac{bc}{a}\right)}=2b\)
Tương tự ta có:
\(\frac{bc}{a}+\frac{ca}{b}\ge2c\)
\(\frac{ca}{b}+\frac{ab}{c}\ge2a\)
Cộng vế với vế của 3 bđt trên rồi chia 2 vế bđt thu được cho 2 ta có ngay đpcm.
Đẳng thức xảy ra khi a = b = c
a) Nếu k có điều kiện a, b > 0 thì bất đẳng thức k thể xảy ra
b) Ta có : \(\frac{ab}{c}+\frac{bc}{a}\ge2b\)
\(\frac{ab}{c}+\frac{ac}{b}\ge2a\)
\(\frac{bc}{a}+\frac{ac}{b}\ge2c\)
Cộng 2 vế của bất đẳng thức ta được :
\(2.\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2.\left(a+b+c\right)\)
=> bất đẳng thức cần chứng minh
a) bn sai đề nhé,đề đúng là : \(\frac{1}{a}+\frac{1}{b}\) > \(\frac{4}{a+b}\) nhé,vì mk làm rồi
Giả sử \(\frac{1}{a}+\frac{1}{b}\) > \(\frac{4}{a+b}\)
=> \(\frac{a+b}{ab}\) > \(\frac{4}{a+b}\)
=>\(\left(a+b\right)\left(a+b\right)\) > 4ab
=>\(\left(a+b\right)^2-4ab\) > 0
=>\(a^2+2ab+b^2-4ab\) > 0
=>\(a^2-2ab+b^2\) > 0
=>\(\left(a-b\right)^2\) > 0
BĐT cuối luôn đúng với mọi a;b
=>điều giả sử là đúng,ta có đpcm
(*)đề sai nên Kiệt ko ra là phải
Biến đổi tương đương:
\(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+b^2+2ab\ge4ab\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)
c và d ở đâu vại:>
\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a^2+ab+b^2\right)\left(a-b\right)^2\ge0\)(đúng)
Đẳng thức xảy ra khi a= b
Ta có đpcm