K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 9 2021

\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=m+1-1=m\\x_2=m+1+1=m+2\end{matrix}\right.\)

\(\left|x_1\right|=3\left|x_2\right|\Leftrightarrow\left|m\right|=3\left|m+2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3m+6=-m\\3m+6=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-3\end{matrix}\right.\)

Δ=(2m-2)^2-4(m^2-4)

=4m^2-8m+4-4m^2+16=-8m+20

Để phương trình có hai nghiệm phân biệt thì -8m+20>0

=>m<5/2

x1(x1-3)+x2(x2-3)=6

=>x1^2+x2^2-3(x1+x2)=6

=>(x1+x2)^2-2x1x2-3(x1+x2)=6

=>(2m-2)^2-3(2m-2)-2m^2+8=6

=>4m^2-8m+4-6m+6-2m^2+8=6

=>2m^2-14m+12=0

=>m^2-7m+6=0

=>m=1(nhận) hoặc m=6(loại)

16 tháng 2 2021

a, Ta có : \(mx^3-x^2+2x-8m=0\)

\(\Leftrightarrow m\left(x^3-8\right)-\left(x^2-2x\right)=0\)

\(\Leftrightarrow m\left(x-2\right)\left(x^2+2x+4\right)-x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(mx^2+2mx+4m-x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(mx^2+x\left(2m-1\right)+4m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\mx^2+x\left(2m-1\right)+4m=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\mx^2+x\left(2m-1\right)+4m=0\left(I\right)\end{matrix}\right.\)

- Để phương trình ban đầu có 3 nghiệm phân biệt lớn hơn 1

<=> Phương trình ( I ) có 2 nghiệm phân biệt lớn hơn 1 .

- Xét phương trình ( I ) có : \(\Delta=b^2-4ac=\left(2m-1\right)^2-4m.4m\)

\(=4m^2-4m+1-16m^2=-12m^2-4m+1\)

- Để phương trình ( I ) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow-\dfrac{1}{2}< m< \dfrac{1}{6}\) ( * )

- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{m}\\x_1x_2=4\end{matrix}\right.\)

- Để phương trình ( I ) có nghiệm lớn hơn 1 \(\Leftrightarrow\left\{{}\begin{matrix}x_1-1+x_2-1>0\\\left(x_1-1\right)\left(x_2-1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1-4m}{m}>0\\5-\dfrac{1-2m}{m}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1-4m}{m}>0\\\dfrac{7m-1}{m}>0\end{matrix}\right.\)

- Lập bảng xét dấu ( đoạn này làm tắt tí nha :vv )

Từ bảng xét dấu ta được : \(\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m>\dfrac{1}{7}\end{matrix}\right.\\0< m< \dfrac{1}{4}\end{matrix}\right.\)

- Kết hợp điều kiện ( * ) ta được :\(\dfrac{1}{7}< m< \dfrac{1}{6}\)

Vậy ...

 

 

 

 

16 tháng 2 2021

b, - Xét phương trình trên có : \(\Delta^,=b^{,2}-ac=\left(m-2\right)^2-\left(m-1\right)\left(m-3\right)\)

\(=m^2-4m+4-m^2+m+3m-3=1>0\)

Nên phương trình có 2 nghiệm phân biệt .

Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-2\right)}{m-1}\\x_1x_2=\dfrac{m-3}{m-1}\end{matrix}\right.\)

- Để \(x_1+x_2+x_1x_2< 1\)

\(\Leftrightarrow\dfrac{2\left(m-2\right)+\left(m-3\right)-\left(m-1\right)}{m-1}< 0\)

\(\Leftrightarrow\dfrac{2m-6}{m-1}< 0\)

- Đặt \(\dfrac{2m-6}{m-1}=f\left(m\right)\)

Cho f(m) = 0 => m = 3

m-1 = 0 => m = 1

- Lập bảng xét dầu :

m.............................1..........................................3...................................

2m-6............-..........|......................-.....................0...................+.................

m-1..............-............0...................+.....................|....................+.................

f(m).............+...........||..................-........................0................+....................

- Từ bảng xét dầu ta được : Để \(f\left(m\right)< 0\)

\(\Leftrightarrow1< m< 3\)

Vậy ...

 

15 tháng 10 2018

tham số là gì ??????????????????????

1 tháng 12 2021

PT có 2 nghiệm \(\Leftrightarrow\Delta=4\left(m+1\right)^2-4\left(m^2+2\right)\ge0\)

\(\Leftrightarrow4m^2+8m+4-4m^2-8\ge0\\ \Leftrightarrow8m-4\ge0\Leftrightarrow m\ge\dfrac{1}{2}\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+2\end{matrix}\right.\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=8m-4\\ x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=2m^2+8m\)

Ta có \(\left|x_1^4-x_2^4\right|=\left(x_1^2+x_2^2\right)\left|x_1-x_2\right|\left|x_1+x_2\right|\)

\(\Leftrightarrow\left|x_1^4-x_2^4\right|=\left(2m^2+8m\right)\sqrt{\left(x_1-x_2\right)^2}\left|2m+2\right|\\ =8\left(m^2+4m\right)\left|m+1\right|\sqrt{2m-1}\)

Mà \(\left|x_1^4-x_2^4\right|=16m^2+64m=16\left(m^2+4m\right)\)

\(\Leftrightarrow\left(m^2+4m\right)\left|m+1\right|\sqrt{2m-1}-2\left(m^2+4m\right)=0\\ \Leftrightarrow\left(m^2+4m\right)\left(\left|m+1\right|\sqrt{2m-1}-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\left(ktm\right)\\m=-4\left(ktm\right)\\\left|m+1\right|\sqrt{2m-1}=2\end{matrix}\right.\\ \Leftrightarrow\left(m+1\right)^2\left(2m-1\right)=4\\ \Leftrightarrow2m^3+3m^2-5=0\\ \Leftrightarrow2m^3-2m^2+5m^2-5=0\\ \Leftrightarrow2m^2\left(m-1\right)+5\left(m-1\right)\left(m+1\right)=0\\ \Leftrightarrow\left(m-1\right)\left(2m^2+5m+5\right)=0\\ \Leftrightarrow m=1\left(2m^2+5m+5>0\right)\left(tm\right)\)

Vậy \(m=1\) thỏa mãn đề bài

3 tháng 5 2020

đoạn cuối là m + 1 hay  m + 11 vậy bạn

3 tháng 5 2020

Xét 

\(\Delta'=\left(m-3\right)^2-\left(m-1\right)\left(m+1\right)=m^2-6m+9-m^2-1=-6m+7\ge0\)

\(\Rightarrow m\le\frac{7}{6}\)

Theo Viete ta có:\(x_1+x_2=\frac{2\left(m-3\right)}{m-1}\left(1\right);x_1x_2=\frac{m+1}{m-1}\)

\(\Leftrightarrow x_1x_2\left(m-1\right)=m+1\Leftrightarrow x_1x_2m-m=1+x_1x_2\)

\(\Leftrightarrow m\left(x_1x_2-1\right)=1+x_1x_2\Leftrightarrow m=\frac{1+x_1x_2}{x_1x_2-1}\)

Thay vào ( 1 ) rồi rút gọn là OK nhá,nhác ko muốn tính :))