Cho hình chữ nhật ABCD. Hai đường chéo AC và BD cắt nhau tại O. Gọi N và E lần lượt là trung điểm của AD và AB. Nối NE cắt AC ở I. Tia BI cắt tia ON ở F. Điểm M di độngtên đoạn BD. Kẻ MH vuông góc với BC ( H thuộc BC) và MK vuông góc với CD ( K thuộc CD)
a) Chứng minh tứ giác OAFD là hình thoi
b) Chứng minh BH.HC + CK.KD = BM.MD
c) Xác định vị trí điểm M trên BD để (BH.HC+CK.KD) lớn nhất
a, ta có N,O lần lượt là trung điểm của AD,AC=> NO//DC mà DC\(\perp\)AD nên \(\widehat{ADO}\)=\(90^o\)
Tương tự ta được \(\widehat{AEO}=90^o\)
Xét tứ giác AEON có:\(\widehat{NAE}=\widehat{ANO}=\widehat{AEO}=90^o\)=>AEON là hình chữ nhật=>AI=AO,BI=ÌF
Vì N,O lần lượt là trung điểm của AD,DB nên NO//AB=>\(\widehat{BAI}=\widehat{IOF}\)
Xét \(\Delta BAI\)và \(\Delta FOI\)có:\(\widehat{BAI}=\widehat{IOF}\),AI=AO,\(\widehat{AIB}=\widehat{FIO}\)
=>\(\Delta BAI=\Delta FOI\)=>AB=FO
Xét tứa giác ABOF có AB//=FO=> ABOF là hình bình hành=>AF=BO mà BO=AO=>AF=AO=OD
Vì I,O lần lượt là trung điểm của BF và BD nên IO=1/2FD=1/2AO=>FD=AO
Xét tứ giác OAFD có:
AF=AO=OD=FD=>OAFD là hình thoi
c,Vì BH.HC+CK.KD=BM.MD mà BM+MD=BD =>ko đổi =>để BM.BD lớnnhaats thì M là trung điểm của BD hay BH.HC+CK.KD lớn nhất khi M trùng với O