Cho \(F=x^3+y^3+z^3+mxyz.\). Định m để F chia hết cho ( x+y+z).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(x^3+y^3+z^3+mxyz=(x+y+z)^3-3(x+y)(y+z)(x+z)+mxyz\)
\(=(x+y+z)^3-3[xy(x+y)+yz(y+z)+xz(x+z)+2xyz]+mxyz\)
\(=(x+y+z)^3-3[xy(x+y+z)+yz(x+y+z)+xz(x+y+z)-xyz]+mxyz\)
\(=(x+y+z)^3-3(x+y+z)(xy+yz+xz)+3xyz+mxyz\)
\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)+(m+3)xyz\)
Như vậy, để \(x^3+y^3+z^3+mxyz\vdots x+y+z, \forall x,y,z\) thì \((m+3)xyz\vdots x+y+z, \forall x,y,z\)
\(\Rightarrow m+3=0\Rightarrow m=-3\)
Cách khác :
Đặt : \(F=x^3+y^3+z^3+mxyz\)
Xem F là một đa thức theo x , kí hiệu : \(F\left(x\right)\)
Vì : \(\left(x+y+z\right)=x-\left(-y-z\right)\) và \(F\) ⋮ \(\left(x+y+z\right)\)
⇒ \(F\left(x\right)\text{⋮}\left[x-\left(-y-z\right)\right]\)
⇒ \(F\left(-y-z\right)=0\) ⇔ \(\left(-y-z\right)^3+y^3+z^3+m\left(-y-z\right)yz=0\)
⇔ \(-3yz\left(y+z\right)+m\left(-y-z\right)yz=0\)
⇔ \(-3yz\left(y+z\right)-m\left(y+z\right)yz\)
⇔ \(-yz\left(y+z\right)\left(m+3\right)=0\)
Đẳng thức trên đúng ∀y,z ⇔ m = - 3
Câu hỏi của vuighe123_oribe - Toán lớp 8 - Học toán với OnlineMath
bạn tham khảo ở trên nhé
đặt phép chia ,để phép chia là phép chia hết thì dư=0 .....=>m=-3
hoặc có thể dễ nhận thấy m=-3 sẽ có hđt x^3+y^3+z^3-3xyz =(x+y+z)(x^2+y^2+z^2-xy-yz-zx) chia hết cho (x+y+z)
Xem F là một đa thức theo x, kí hiệu F(x).
Vì (x + y+ z)= x - (-y - z) và F\(⋮\)(x + y + z) nên F(x) \(⋮\)\([x-\left(-y-z\right)]\)
Suy ra F (-y - z) = 0 \(\Leftrightarrow\)\(\left(-y-z\right)^3+y^3+z^3+m\left(-y-z\right)yz=0\)
\(\Leftrightarrow-3yz\left(y+z\right)+m\left(-y-z\right)yz=0\)\(\Leftrightarrow yz\left(y+z\right)\left(3+m\right)=0\)
Đẳng thức trên đúng \(\forall y,z\Leftrightarrow m=-3\)
\(F=x^3+y^3+z^3+mxyz\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz+mxyz\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+xyz\left(m+3\right)\)
Vì\(F⋮\left(x+y+z\right)\)mà \(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)⋮x+y+z\)
Nên \(xyz\left(m+3\right)⋮x+y+z\forall x;y;z\)
Như vậy m + 3 = 0 <=> m = -3