K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2019

Không mất tính tổng quát, giả sử ha là độ dài đường cao ứng với BC. Định nghĩa tương tự với hb và hc

Phương án A: Xét ha = 6, hb = hc = 8. Giả sử tồn tại tam giác ABC nhận bộ (6,8,8) làm độ dài 3 đường cao

Ta có 2.SABC = 6BC = 8AB = 8CA. Suy ra \(BC=\frac{4}{3}AB=\frac{4}{3}CA\)

Đặt BC = a. Khi đó \(AB=CA=\frac{3}{4}a\). Ta thấy: 

\(AB+CA=\frac{3}{4}a+\frac{3}{4}a=\frac{3}{2}a>a=BC\)

\(BC+CA=BC+AB=a+\frac{3}{4}a=\frac{7}{4}a>\frac{3}{4}a=AB=CA\) (Đúng với ĐBT tam giác)

=> Tồn tại tam giác ABC nhận bộ (6,8,8) làm độ dài 3 đường cao => Chọn (A).

Phương án B: Loại vì một tam giác không thể chứa 5 đường cao.

Phương án C: Lập luận tương tự ta có \(BC=2CA=2AB\)

Tức là \(CA+AB=BC\) (Mâu thuẫn với BĐT tam giác) => Loại (C).

Phương án D: \(3BC=6CA=8AB\Rightarrow BC=2CA=\frac{8}{3}AB\)

Hay \(BC=a,CA=\frac{a}{2},AB=\frac{3}{8}a\). Có \(CA+AB=\frac{a}{2}+\frac{3}{8}a=\frac{7}{8}a< a=BC\)

=> Mâu thuẫn với BĐT tam giác => Loại (D).

Phương án E: \(3BC=6CA=9AB\Rightarrow BC=2CA=3AB\)

Hay \(BC=a,CA=\frac{a}{2},AB=\frac{a}{3}\). Có \(CA+AB=\frac{a}{2}+\frac{a}{3}=\frac{5}{6}a< a=BC\)

=> Mâu thuẫn với BĐT tam giác => Loại (E).

Vậy chỉ có bộ số (A). (6,8,8) thỏa mãn đề.

20 tháng 6 2019

Gọi a,b,c là 3 cạnh tương ứng với đường cao \(h_a;h_b;h_c\)

Có: \(a< b+c\Rightarrow\frac{2S}{h_a}< \frac{2S}{h_b}+\frac{2S}{h_c}\Rightarrow\frac{1}{h_a}< \frac{1}{h_b}+\frac{1}{h_c}\)

Tương tự với \(h_b;h_c\)

Xét: (B): (10;5;15) \(\frac{1}{5}>\frac{1}{10}+\frac{1}{15}=\frac{1}{6}\)(không là độ dài 3 đường cao)

Xét: (C): \(\frac{1}{2}=\frac{1}{4}+\frac{1}{4}\)(không là độ dài 3 đường cao)

Xét (D): \(\frac{1}{3}>\frac{1}{6}+\frac{1}{8}=\frac{7}{24}\)(không là độ dài 3 đường cao)

Xét: (E): \(\frac{1}{3}>\frac{1}{6}+\frac{1}{9}=\frac{5}{18}\)(không là độ dài 3 đường cao) 

Chọn A

18 tháng 7 2020

sorry em lp 6 nen ko hieu

30 tháng 5 2017

Theo đề bài thì ta có:

\(ah_a=bh_b=ch_c=2\)

Ta có:

\(\left(a^2+b^2+c^2\right)\left(h_a^2+h_b^2+h_c^2\right)\ge\left(ah_a+bh_b+ch_c\right)^2\)

\(=\left(2+2+2\right)^2=36\)

Dấu = xảy ra khi \(\hept{\begin{cases}a=b=c=\frac{2}{\sqrt[4]{3}}\\h_a=h_b=h_c=\sqrt[4]{3}\end{cases}}\) 

23 tháng 11 2016

Vô câu hỏi hay mà xem nhé bạn. Câu này mình giải rồi

1 tháng 1 2017

Tử số cũng biến thiên theo ha, hb, hc ...Suy luận được như trên chỉ khi Tử số là một số A không đổi. 

Gọi S là diện tích tam giác, r là bánh kính đường tròn nội tiếp 

Ta có 

ha=2S/a =r(a+b+c)/a 

=> ha^2 + hb^2 + hc^2 = r^2(a+b+c)^2 * (1/a^2+1/b^2+1/c^2)} 

=> T = (a+b+c)^2/(ha^2+hb^2+hc^2) = 

=1/r^2/(1/a^2+1/b^2+1/c^2) 

Ta c/m (1/a^2+1/b^2+1/c^2) <=1/4r^2 (*) 

=> T<=1/4 

=> Max(T) = 1/4 Khi tam giác đều 

c/m bất đẳng thức (*) 

S = pr 

S= √p(p-a)(p-b)(p-c) 

=> pr= √p(p-a)(p-b)(p-c) 

=> (pr^2) = (p-a)(p-b)(p-c) 

=> 1/r^2 = p/(p-a)(p-b)(p-c) = 1/((p-a)(p-b) + 1/(p-b)(p-c) + 1/(p-a)(p-c) 

=> 1/4r^2 = 1/[a^2 - (b-c)^2] + 1/[b^2 - (a-c)^2] + 1/[c^2 - (b-a)^2] >= 1/a^2 + 1/b^2 + 1/c^2 

=> 1/4r^2>= 1/a^2 + 1/b^2 + 1/c^2 

=> (1/r^2)/ 1/a^2 + 1/b^2 + 1/c^2 >= 1/4

=> Dấu bằng xảy ra khi ha = hb = hc => Khi đó ABC là tam giác đều

Câu 5: C,D

Câu 6; B

Câu 7: A

Câu 8:B

6 tháng 3 2022

 C,D

 B

 A

B