Tìm để đồ thị hàm số song song với đường thẳng .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Để (d)//(1) thì \(\left\{{}\begin{matrix}2m-1=2\\-5m\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m=3\\m\ne\dfrac{-3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne-\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow m=\dfrac{3}{2}\)
Vậy: Khi \(m=\dfrac{3}{2}\) thì (d)//(1)
a: Thay x=2 và y=-3 vào (d), ta được:
\(2\left(2m-1\right)-2m+5=-3\)
=>\(4m-2-2m+5=-3\)
=>2m+3=-3
=>2m=-6
=>\(m=-\dfrac{6}{2}=-3\)
b: Để (d)//(d') thì \(\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m=3\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne2\end{matrix}\right.\)
=>m=3/2
Thay m=3/2 vào (d), ta được:
\(y=\left(2\cdot\dfrac{3}{2}-1\right)x-2\cdot\dfrac{3}{2}+5=2x+2\)
y=2x+2 nên a=2
Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox
\(tan\alpha=2\)
=>\(\alpha\simeq63^026'\)
a) Khi m =2 thì y = 3x - 1
(Bạn tự vẽ tiếp)
b) Để \((d)//(d_{1})\) thì \(\begin{cases} 2m-1=-3\\ -3m+5\neq2 \end{cases} \) ⇔ \(\begin{cases} m=-1\\ m\neq1 \end{cases} \) ⇔ \(m=-1\)
c)
Để \((d) ⋂ (d1)\) thì \(2m-1\neq-3 \) ⇔ \(m\neq-1\)
Giao điểm của 2 đường thẳng thuộc trục tung => x=0
Khi đó, ta có: \(y=-3.0+2=2\)
⇒ Điểm \((0;2)\) cũng thuộc đường thẳng (d)
⇒ \(2=(2m-1).0-3m+5\) ⇔ \(m=1\) (TM)
b: Để hai đường thẳng song song thì 5m-3=2m+1
hay m=4/3
a: Để hàm số y=(2m+3)x-2m+5 nghịch biến trên R thì 2m+3<0
=>2m<-3
=>\(m< -\dfrac{3}{2}\)
b: Để (d)//(d1) thì
\(\left\{{}\begin{matrix}2m+3=3m-2\\-2m+5\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-m=-5\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=5\\m\ne2\end{matrix}\right.\)
=>m=5
c: Thay y=5 vào y=3x-1, ta được:
3x-1=5
=>3x=6
=>x=6/3=2
Thay x=2 và y=5 vào (d), ta được:
\(2\left(2m+3\right)-2m+5=5\)
=>\(4m+6-2m+5=5\)
=>2m+11=5
=>2m=-6
=>m=-6/2=-3
d: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(2m+3\right)x-2m+5=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x\left(2m+3\right)=2m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{2m-5}{2m+3}\end{matrix}\right.\)
=>\(A\left(\dfrac{2m-5}{2m+3};0\right)\)
\(OA=\sqrt{\left(\dfrac{2m-5}{2m+3}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{2m-5}{2m+3}\right)^2}=\left|\dfrac{2m-5}{2m+3}\right|\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=x\left(2m+3\right)-2m+5=0\left(2m+3\right)-2m+5=-2m+5\end{matrix}\right.\)
=>\(B\left(-2m+5;0\right)\)
\(OB=\sqrt{\left(-2m+5-0\right)^2+\left(0-0\right)^2}\)
\(=\sqrt{\left(-2m+5\right)^2}=\left|2m-5\right|\)
Vì Ox\(\perp\)Oy
nên OA\(\perp\)OB
=>ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot\left|2m-5\right|\cdot\dfrac{\left|2m-5\right|}{\left|2m+3\right|}\)
\(=\dfrac{1}{2}\cdot\dfrac{\left(2m-5\right)^2}{\left|2m+3\right|}\)
Để \(S_{AOB}=1\) thì \(\dfrac{\dfrac{1}{2}\left(2m-5\right)^2}{\left|2m+3\right|}=1\)
=>\(\dfrac{\left(2m-5\right)^2}{\left|2m+3\right|}=2\)
=>\(\left(2m-5\right)^2=2\left|2m+3\right|\)
=>\(\left(2m-5\right)^2=2\left(2m+3\right)\)
=>\(4m^2-20m+25-4m-6=0\)
=>\(4m^2-24m+19=0\)
=>\(m=\dfrac{6\pm\sqrt{17}}{2}\)
a, để hàm số nghịch biến thì \(2m+3< 0\Rightarrow m< -\dfrac{3}{2}\)
để hàm số đồng biến thì \(2m+3>0\Rightarrow m>-\dfrac{3}{2}\)
b, Để hàm số y = (2m+3)x-2 song song với đường thẳng y = -5x+3 thì
\(\left\{{}\begin{matrix}2m+3=-5\\-2\ne3\end{matrix}\right.\Rightarrow m=-4\)
Để hàm số y=(2m-3)x-5m+1 là hàm số bậc nhất thì \(2m-3\ne0\)
\(\Leftrightarrow2m\ne3\)
\(\Leftrightarrow m\ne\dfrac{3}{2}\)
a) Để hàm số y=(2m-3)x-5m+1 đồng biến trên R thì \(2m-3>0\)
\(\Leftrightarrow2m>3\)
hay \(m>\dfrac{3}{2}\)
Vậy: Khi hàm số y=(2m-3)x-5m+1 đồng biến trên R thì \(m>\dfrac{3}{2}\)
b) Để đồ thị hàm số y=(2m-3)x-5m+1 song song với đường thẳng y=3x+5 thì \(\left\{{}\begin{matrix}2m-3=3\\-5m+1\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m=6\\-5m\ne4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne\dfrac{-4}{5}\end{matrix}\right.\Leftrightarrow m=3\left(nhận\right)\)
Vậy: Để đồ thị hàm số y=(2m-3)x-5m+1 song song với đường thẳng y=3x+5 thì m=3
a. Tìm m để hàm số đồng biến.
Để hàm số trên đồng biến. => 2m-3 > 0
<=> 2m > 3
<=> m > 3/2
b. Tìm m để đồ thị hàm số (1) song song đường thẳng y=3x-5
Để đồ thị hàm số (1) song song đường thẳng y = 3x - 5
=> 2m-3 = 3 và -5m+1 khác - 5
<=> m = 3 và m khác 6/5
<=> m = 3 (tm)
c. Tính góc tạo bởi đường thẳng y=3x-5 với trục Ox
Gọi góc tạo bởi đường thẳng y=3x-5 với trục Ox là a (a>0)
=> tan a = |3|
=> tan a = 3
=> góc a = 71o 33'
Hàm số y = ( 2 m – 2 ) x + m – 2 là hàm số bậc nhất khi 2 m – 2 ≠ 0 ⇔ m ≠ 1
Để d // d’ thì 2 m − 2 = 3 m − 3 ≠ − 3 m ⇔ m = 5 2 m ≠ 3 4 ⇔ m = 5 2 (thỏa mãn)
Vậy m = 5 2
Đáp án cần chọn là: C
Để đồ thị hàm số \(y=\left(2m+2\right)x-5m\)song song với đường thẳng \(y=4x+1\)thì:
\(\hept{\begin{cases}2m+2=4\\-5m\ne1\end{cases}}\Leftrightarrow m=1\).