K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2015

Ta thấy: 2009 đồng dư với 2009(mod 2010)

=>2009 đồng dư với -1(mod 2010)

=>20092008 đồng dư với (-1)2008(mod 2010)

=>20092008 đồng dư với 1(mod 2010)

Lại có: 2011 đồng dư với 1(mod 2010)

=>20112010 đồng dư với 12010(mod 2010)

=>20112010 đồng dư với 1(mod 2010)

Khi đó: 20092008+20112010 đồng dư với 1+1(mod 2010)

=>20092008+20112010 đồng dư với 2(mod 2010)

=>20092008+20112010 chia 2010 dư 2

=>20092008+20112010 không chia hết cho 10

=>Vô lí

Bạn xem lại đề nha

1 tháng 10 2023

a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2  nhưng 10615 không chia hết cho 2

10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9

1 tháng 10 2023

c,    B = 102010 -  4                                                                                   

       10 \(\equiv\) 1 (mod 3)

      102010 \(\equiv\) 12010 (mod 3)

      4          \(\equiv\) 1(mod 3)

⇒ 102010 - 4   \(\equiv\) 12010 - 1 (mod 3)

⇒ 102010 - 4   \(\equiv\)  0 (mod 3)

⇒ 102010 - 4 \(⋮\) 3

16 tháng 12 2023

A = 20102011 - 20102010

A = 20102010 .( 2010 - 1)

A = 20102010.2009

2009 ⋮ 2009 ⇒ A = 20102010.2009 ⋮ 2009

8 tháng 4 2021

Nó có chia hết à ??? 

Ta thấy 2009 chia 2010 dư  -1 

=> 2009 ^ 2008 chia 2010 dư 1 (1)

Lại có  2011 chia 2010 dư 1

=> 2011^2010 chia 2020 dư 1 (2)

Từ (1)(2) => 2009^2008-2011^2020 chia 2010 dư 2 (sai )

9 tháng 4 2021

2009^2008+2011^2010 chia hết cho 2010 2009^2008+2011^2010

=2009^2008+2011^2010

=2009^2008+2011^2010+1-1

=(2009^2008+ 1) + (2011^2010– 1)

= (2009 + 1)(2009^2007- …) + (2011 – 1)(2011^2009 + …)

= 2010(2009^2008 - …) + 2010(2011^2009+ …) chia hết cho 2010  

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???

1 tháng 3 2017

a, Vì A có 3 chữ số tận cùng là 008 => A chia hết cho 8 (1)

A có tổng các chữ số là 12 chia hết cho 3 (2)

Từ (1) và (2) với (3,8)=1 => A chia hết cho 24

b, Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương. 

31 tháng 12 2021

Onepiece23

13 tháng 8 2015

Gỉa sử tồn tại số tự nhiên n để 2010- 1 chia hết cho 1010- 1

Vì 2010 chia hết cho 3 nên 2010n chia hết cho 3 => 2010- 1 không chia hết cho 3  => 1010- 1 không chia hết cho 3

Mà  1010 đồng dư với -1 ( mod 3) => 1010n  - 1 đồng dư với (-1)- 1 (mod 3)  => (-1)n - 1 khác 0 => n lẻ 

+) Vì 1010n - 1 chia hết cho 1010 - 1 = 1009 nên 2010- 1 chia hết cho 1009 Hay 2010n đồng dư với 1 ( mod 1009)

Gọi k là số nguyên dương nhỏ nhất mà 2010k đồng dư với 1 ( mod 1009) => n chia hết cho k Mà n lẻ nên k lẻ

+) Ta lại có: 1009 là số nguyên tố và  nguyên tố cùng nhau với 2010. Theo ĐL Fermat nhỏ có: 20101008 đồng dư với 1 (mod 1009)

Vì k là số nguyên dương nhỏ nhất để 2010k đồng dư với 1 ( mod 1009) nên k là ước của 1008

1008 = 24.32. 7 Mà k lẻ nên k có thể bằng 3;7;9;21;27; 63

Thử các giá trị của k

Vì 2010 đồng dư với -8 (mod 1009) nên 20103 đồng dư với -512 (mod 1009) => Loại k = 3

tương tự với k = 7; 9 => Loại

20109 đồng dư với 8(mod 1009) ; 89 đồng dư với 548 (mod 1009)

=> 201027 đồng dư với 5483 ( mod 1009); 5483 đồng dư với 710 ( mod 1009)

=> k = 27 Loại

Làm tương tự với k = 63 => Loại

Vậy không có giá trị nào của k thỏa mãn y/c => điều giả sử sai

=> Không tồn tại số tự nhiên n thỏa mãn y/ c