K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(5x\left(2x-1\right)+3x\left(x+2\right)=13x^2-5\)

=> \(10x^2-5x+3x^2+6x=13x^2-5\)

= >\(13x^2-5x+6x-13x^2=-5\)

=> x = -5

11 tháng 6 2018

1/

a/ \(D=2x\left(10x^2-5x-2\right)-5x\left(4x^2-2x-1\right)\)

\(D=2x\left[10\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)\right]-5x\left[4\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\right]\)

\(D=20x\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)-20x\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\)

\(D=20x^3-10x^2-4x-20x^3+10x^2+5x\)

\(D=x\)

b/ Mình xin sửa lại đề:

Tính giá trị biểu thức \(E\left(x\right)=x^5-13x^4+13x^3-13x^2+13x+2012\)

Tại x = 12

\(E\left(x\right)=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x-1\right)x+2012\)

\(E\left(x\right)=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2-x+2012\)

\(E\left(x\right)=2012-x\)

\(E\left(x\right)=2000\)

2/

a/ \(2x\left(x-5\right)-x\left(3+2x\right)=26\)

<=> \(2x^2-10x-3x-2x^2=26\)

<=> \(-13x=26\)

<=> \(x=-2\)

b/ Bạn vui lòng coi lại đề.

3a/ Ta có \(D=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)

\(D=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x\)

\(D=-10\)

Vậy giá trị của D không phụ thuộc vào x (đpcm)

11 tháng 6 2018

Giúp mik vs^^

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

nhầm

 

7 tháng 7 2019

a) 4x - 2x + 3 - 4x.(x - 5) = 7x - 3

--> 4x2 - 2x + 3 - 4x2 + 20x = 7x - 3

--> 4x2 - 2x - 4x2 + 20x - 7x = -3 - 3

--> 11x = -6

--> x = \(\frac{-6}{11}\)

b) -3x.(x - 5) + 5.(x - 1) + 3x2 = 4x

--> -3x2 + 15x + 5x - 5 + 3x2 = 4x

--> -3x + 15x + 5x + 3x2 - 4x = 5 

--> 16x = 5

--> x = \(\frac{5}{16}\)

c) 7x.(x - 2) - 5.(x - 1) = 21x2 - 14x2 + 3

--> 7x2 - 14x - 5x + 5 = 7x2 + 3 

--> 7x - 14x - 5x - 7x2  = -5 + 3 

--> -19x = -2 

--> x = \(\frac{2}{19}\)

d) 3.(5x - 1) - x.(x - 2) + x2 - 13x = 7

--> 15x - 3 - x2 + 2x + x2 - 13x = 7

--> 15x - x2 + 2x + x2 - 13x = 3 + 7

--> 4x = 10

--> x = \(\frac{5}{2}\)

e) \(\frac{1}{5}\)x.(10x - 15) - 2x.(x - 5) = 12

--> 2x2 - 3x - 2x2 + 10x = 12

--> 7x = 12

--> x = \(\frac{12}{7}\)

~ Học tốt ~

4 tháng 7 2019

a) 4x2 - 2x + 3 - 4x(x - 5) = 7x - 3

=> 4x2 - 2x + 3 - 4x2 + 20x = 7x - 3

=> 18x + 3 = 7x - 3

=> 18x - 7x = -3 - 3

=> 11x = -6

=>  x = -6/11

b) -3x(x - 5) + 5(x - 1) + 3x2 = 4x

=> -3x2 + 15x + 5x - 5 + 3x2 = 4x

=> 20x - 5 = 4x

=> 20x - 4x = 5

=> 16x = 5

=> x = 5/16

\(c,7x\left(x-2\right)-5\left(x-1\right)=21x^2-14x^2+3\)

\(\Leftrightarrow7x^2-14x-5x+5=7x^2+3\)

\(\Leftrightarrow7x^2-7x^2-19x=3-5\)

\(\Leftrightarrow-19x=-2\)

\(\Leftrightarrow x=\frac{2}{19}\)

21 tháng 6 2023

Câu 2: 

a) \(-2x\left(x-5\right)+3\left(x-1\right)+2x^2-13x\)

\(=-2x^2+10x+3x-3+2x^2-13x\)

\(=\left(-2x^2+2x^2\right)+\left(10x+3x-13x\right)-3\)

\(=0+0-3\)

\(=-3\)

Vậy giá trị của biểu thức không phụ thuộc vào biến

b) \(-x^2\left(2x^2-x-3\right)+x\left(x^2+2x^3+3\right)-3x\left(x^2+x\right)+x^3-3x\)

\(=-2x^4+x^3+3x^2+x^3+2x^4+3x-3x^3-3x^2+x^3-3x\)

\(=\left(-2x^4+2x^4\right)+\left(x^3+x^3-3x^3+x^3\right)+\left(3x^2-3x^2\right)+\left(3x-3x\right)\)

\(=0+0+0+0\)

\(=0\)

Vậy giá trị của biểu thức không phụ thuộc vào biến

21 tháng 6 2023

Câu 4: 

a) \(A=2x\left(3x^2-2x\right)+3x^2\left(1-2x\right)+x^2-7\)

\(A=6x^3-4x^2+3x^2-6x^3+x^2-7\)

\(A=-7\)

Thay \(x=-2\) vào biểu thức A ta có:

\(A=-7\)

Vậy giá trị của biểu thức A là -7 tại \(x=-2\)

b) \(B=x^5-15x^4+16x^3-29x^2+13x\)

\(B=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)

\(B=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)

\(B=-x\)

Thay \(x=14\) vào biểu thức B ta được:

\(B=-14\)

Vậy giá trị của biểu thức B tại \(x=14\) là -14

28 tháng 9 2021

\(a,=\left(2x^4-2x^3+2x^2+3x^3-3x^2+3x-2x^2+2x-2\right):\left(x^2-x+1\right)\\ =\left(x^2-x+1\right)\left(2x^2+3x-2\right):\left(x^2-x+1\right)\\ =2x^2+3x-2\\ b,=\left(6x^2+15x-2x-5\right):\left(2x+5\right)\\ =\left(2x+5\right)\left(3x-1\right):\left(2x+5\right)=3x-1\\ c,=\left(2x^4-6x^2+x^3-3x+x^2-3\right):\left(x^2-3\right)\\ =\left(x^2-3\right)\left(2x^2+x+1\right):\left(x^2-3\right)=2x^2+x+1\)

1: \(\dfrac{2x^3+11x^2+18x-3}{2x+3}\)

\(=\dfrac{2x^3+3x^2+8x^2+12x+6x+9-12}{2x+3}\)

\(=x^2+4x+3-\dfrac{12}{2x+3}\)

 

22 tháng 7 2021

b) 5x(x-2000)-x+2000=0

\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\\ \Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+2000\\5x=0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)

22 tháng 7 2021

Ai giúp minh làm bài 5 phía trên với

 

14 tháng 8 2015

cái bài này tìm nghiệm là ra mà bạn

31 tháng 12 2016

câu trả lời của thu hương rất hay!

Mình làm được khổ nỗi lại chưa biết nghiệm là gì? @ thu hương có thể giải thích cho minh không

 hiihhi