K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2019

Ta có : \(a^3+1=\left(a+1\right)\left(a^2-a+1\right)=\left(a+1\right)\left(a^2-a+\frac{1}{4}\right)+\frac{3}{4}\left(a+1\right)\)

do đó : \(a^3-\frac{3}{4}a+\frac{1}{4}=\left(a+1\right)\left(a-\frac{1}{2}\right)^2\ge0\)với \(a\ge-1\)

Tương tự : \(b^3-\frac{3}{4}b+\frac{1}{4}\ge0,c^3-\frac{3}{4}c+\frac{1}{4}\ge0\)với \(b,c\ge-1\)

\(a^3+b^3+c^3-\frac{3}{4}\left(a+b+c\right)+\frac{3}{4}\ge0\Rightarrow a^3+b^3+c^3\ge-\frac{3}{4}\)

Dấu " = " xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}a=-1\text{ hoặc }a=\frac{1}{2}\\.....\\a+b+c=0\end{cases}}\)

Vậy GTNN của A là \(\frac{-3}{4}\)\(\Leftrightarrow\) a,b,c có 2 số bằng \(\frac{1}{2}\)và 1 số bằng -1

28 tháng 2 2020

1) Tìm GTNN : 

Ta có : \(\frac{x}{y+1}+\frac{y}{x+1}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}\ge\frac{\left(x+y\right)^2}{2xy+\left(x+y\right)}\ge\frac{1}{\frac{\left(x+y\right)^2}{2}+1}=\frac{1}{\frac{1}{2}+1}=\frac{2}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

2) Áp dụng BĐT Svacxo ta có :

\(\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge\frac{\left(a+b+c\right)^2}{3+a+b+c}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

28 tháng 2 2020

2/ Áp dụng bđt Cô- si cho 2 số dương ta có :

\(\frac{a^2}{1+b}+\frac{1+b}{4}\ge2\sqrt{\frac{a^2}{1+b}\frac{1+b}{4}}=a\)

Tương tự ta có \(\frac{b^2}{1+c}+\frac{1+c}{4}\ge b;\frac{c^2}{1+a}+\frac{1+a}{4}\ge c\)

\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge a+b+c-\left(\frac{1+b}{4}+\frac{1+c}{4}+\frac{1+a}{4}\right)\)

\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge3-\frac{1}{4}\left(a+b+c\right)-\frac{3}{4}=3-\frac{1}{4}.3-\frac{3}{4}=\frac{3}{2}\)

Dấu "=" xảy ra <=> a=b=c=1 

DD
3 tháng 5 2022

Ta có: \(1=a^2+b^2+c^2\ge ab+bc+ca\).

\(P=\dfrac{a^3}{b+2c}+\dfrac{b^3}{c+2a}+\dfrac{c^3}{a+2b}=\dfrac{a^4}{ab+2ca}+\dfrac{b^4}{bc+2ab}+\dfrac{c^4}{ca+2bc}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3\left(ab+bc+ca\right)}=\dfrac{1}{3\left(ab+bc+ca\right)}\ge\dfrac{1}{3}\)

Dấu \(=\) xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\).

11 tháng 5 2020

Ta sẽ sử dụng đánh giá \(x^3+\frac{1}{x^3}\ge\frac{1}{\left(1+9^3\right)^2}\left(x+\frac{81}{x}\right)^3\)

Dấu "=" xảy ra <=> x=\(\frac{1}{3}\)

Sử dụng đánh giá trên ta có: \(\hept{\begin{cases}\sqrt[3]{a^3+\frac{1}{a^3}}\ge\frac{1}{\sqrt[3]{\left(1+9^3\right)^2}}\left(a+\frac{81}{a}\right)\\\sqrt[3]{b^3+\frac{1}{b^3}}\ge\frac{1}{\sqrt[3]{\left(1+9^3\right)^2}}\left(b+\frac{81}{b}\right)\\\sqrt[3]{c^3+\frac{1}{c^3}}\ge\frac{1}{\sqrt[3]{\left(1+9^3\right)^2}}\left(c+\frac{81}{c}\right)\end{cases}}\)

Cộng theo vế ta được \(P=\sqrt[3]{a^3+\frac{1}{a^3}}+\sqrt[3]{b^3+\frac{1}{b^3}}+\sqrt[3]{c^3+\frac{1}{c^3}}\ge\frac{1}{\sqrt[3]{\left(1+9^3\right)^2}}\left(a+b+c+\frac{81}{a}+\frac{81}{b}+\frac{81}{c}\right)\)

Ta lại có: \(a+b+c+\frac{81}{a}+\frac{81}{b}+\frac{81}{c}\ge a+b+c+\frac{729}{a+b+c}=a+b+c+\frac{1}{a+b+c}+\frac{729}{a+b+c}\)

\(\ge2+728=730\)

=> \(P\ge\frac{730}{\sqrt[3]{\left(1+9^3\right)^2}}=\sqrt[3]{730}\)

Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)

11 tháng 5 2020

Hey Hải Nhật, mk có bảo bạn giải đâu ạ? Lời giải này thì mk biết lâu r, (chép trong tài liệu), nhưng mình hỏi cách tìm bđt phụ kia cơ mà

29 tháng 4 2017

Áp dụng bđt Cauchy - Schwarz dưới dạng Engel ta có :

\(a^4+b^4+c^4\ge\frac{\left(a^2+b^2+c^2\right)^2}{3}\ge\frac{\left[\frac{\left(a+b+c\right)^2}{3}\right]^2}{3}=\frac{\left(\frac{9}{3}\right)^2}{3}=3\)

Dấu "=" xảy ra <=> a = b = c = 1

10 tháng 4 2017

Câu 2-Ta có x^2+y^2=5

(x+y)^2-2xy=5

Đặt x+y=S. xy=P

S^2-2P=5

P=(S^2-5)/2

Ta lại có P=x^3+y^3=(x+y)^3-3xy(x+y)=S^3-3SP=S^3-3S(S^2-5)/2

Rùi tự tính

10 tháng 4 2017

Câu1

Ta có P<=a+a/4+b+a/12+b/3+4c/3 (theo bdt cô sy)

=> P<=4/3(a+b+c)=4/3

Vậy Max p =4/3 khi a=4b=16c 

13 tháng 9 2017

a)Từ \(a+b+c\ge ab+bc+ca\)

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) *đúng*

Khi \(a=b=c\)

b)Áp dụng BĐT AM-GM ta có: 

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự rồi cộng theo vế :

\(M\ge3-\frac{ab+bc+ca}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)

Khi \(a=b=c=1\)