K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 6 2019

\(\frac{P}{3}=\frac{a^2-ab-3b^2}{3}=\frac{a^2-ab-3b^2}{a^2+ab+b^2}\)

Nếu \(b=0\Rightarrow P=3\)

Nếu \(b\ne0\) chia cả tử và mẫu cho \(b^2\) ta được: \(\frac{P}{3}=\frac{\left(\frac{a}{b}\right)^2-\frac{a}{b}-3}{\left(\frac{a}{b}\right)^2+\frac{a}{b}+1}\)

Đặt \(\frac{a}{b}=x\Rightarrow\frac{P}{3}=\frac{x^2-x-3}{x^2+x+1}\)

\(\Leftrightarrow Px^2+Px+P=3x^2-3x-9\)

\(\Leftrightarrow\left(P-3\right)x^2+\left(P+3\right)x+P+9=0\)

Với \(P\ne3\) ta có

\(\Delta=\left(P+3\right)^2-4\left(P-3\right)\left(P+9\right)\ge0\)

\(\Leftrightarrow-3P^2-30P+117\ge0\)

\(\Rightarrow-13\le P\le3\)

\(\Rightarrow P_{max}=3\) khi \(b=0\)

\(P_{min}=-13\) khi \(x=-\frac{5}{16}\Rightarrow a=-\frac{5}{16}b\)

21 tháng 10 2018

Ta có:

\(M=\frac{19a+3}{1+b^2}+\frac{19b+3}{c^2+1}+\frac{19c+3}{a^2+1}\)

\(=19a-\frac{19ab^2-3}{b^2+1}+19b-\frac{19bc^2-3}{c^2+1}+\frac{19ca^2-3}{a^2+1}\)

\(\ge19\left(a+b+c\right)-\frac{19ab^2-3}{2b}-\frac{19bc^2-3}{2c}-\frac{19ca^2-3}{2a}\)

\(=19\left(a+b+c\right)-19\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ca}{2}\right)+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\ge19.3-\frac{19.3}{2}+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{19.3}{2}+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Lại có:

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge3\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\ge3\frac{\left(1+1+1\right)^2}{ab+bc+ca}=\frac{3.9}{3}=9\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)

\(\Rightarrow M\ge\frac{19.3}{2}+\frac{3}{2}.3=33\)

\(\)

20 tháng 4 2018

ta có \(a^3+a^3+1\ge3a^2.\)mấy cái khác tt bạn cộng vế theo vế là ra GTNN

15 tháng 8 2016

Ta có : \(\frac{bc}{\sqrt{3a+bc}}=\frac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\frac{bc}{\sqrt{a^2+ab+ac+bc}}=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

Áp dụng bđt Cauchy , ta có : \(\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{bc}{2}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

Tương tự : \(\frac{ac}{\sqrt{3b+ac}}=\frac{ac}{\sqrt{\left(a+b\right)\left(b+c\right)}}\le\frac{ac}{2}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)\(\frac{ab}{\sqrt{3c+ab}}=\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\frac{ab}{2}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)

\(\Rightarrow P=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{ac}{\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{ab}{\sqrt{\left(a+c\right)\left(c+b\right)}}\)

             \(\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ac}{a+b}+\frac{ac}{b+c}\right)\)

 \(\Rightarrow P\le\frac{1}{2}\left(\frac{ab+bc}{a+c}+\frac{ab+ac}{b+c}+\frac{bc+ac}{a+b}\right)=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)

Suy ra : Max P \(=\frac{3}{2}\Leftrightarrow a=b=c=1\)

15 tháng 8 2016

đây nhé Câu hỏi của Steffy Han - Toán lớp 8 | Học trực tuyến

28 tháng 8 2016

\(\frac{a}{9b^2+1}=\frac{a\left(9b^2+1\right)-9ab^2}{9b^2+1}=a-\frac{9ab^2}{9b^2+1}\ge a-\frac{9ab^2}{2\sqrt{9b^2.1}}=\)

\(=a-\frac{9ab^2}{6b}=a-\frac{3ab}{2}\)

Tương tự với các biểu thức còn lại, kết hợp với 

\(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\)

là được đáp án.

16 tháng 4 2021

\(K=\frac{a^2}{c\left(a^2+c^2\right)}+\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}\left(a,b,c>0\right)\).

Ta có:

\(\frac{a^2}{c\left(a^2+c^2\right)}=\frac{\left(a^2+c^2\right)-c^2}{c\left(a^2+c^2\right)}=\frac{a^2+c^2}{c\left(a^2+c^2\right)}-\frac{c^2}{c\left(a^2+c^2\right)}\)\(=\frac{1}{c}-\frac{c^2}{c\left(a^2+c^2\right)}\).

Vì \(a,c>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(a^2+c^2\ge2ac\).

\(\Leftrightarrow c\left(a^2+c^2\right)\ge2ac^2\).

\(\Rightarrow\frac{1}{c\left(a^2+c^2\right)}\le\frac{1}{2ac^2}\)

\(\Leftrightarrow\frac{c^2}{c\left(a^2+c^2\right)}\le\frac{c^2}{2ac^2}=\frac{1}{2a}\).

\(\Leftrightarrow-\frac{c^2}{c\left(a^2+c^2\right)}\ge-\frac{1}{2a}\).

\(\Leftrightarrow\frac{1}{c}-\frac{c^2}{c\left(a^2+c^2\right)}\ge\frac{1}{c}-\frac{1}{2a}\)

\(\Leftrightarrow\frac{a^2}{c\left(a^2+c^2\right)}\ge\frac{1}{c}-\frac{1}{2a}\left(1\right)\)

Dấu bằng xảy ra \(\Leftrightarrow a=c>0\) .

Chứng minh tương tự, ta được:

\(\frac{b^2}{a\left(a^2+b^2\right)}\ge\frac{1}{a}-\frac{1}{2b}\left(a,b>0\right)\left(2\right)\) 

Dấu bằng xảy ra \(\Leftrightarrow a=b>0\)

Chứng minh tương tự, ta dược:

\(\frac{c^2}{b\left(b^2+c^2\right)}\ge\frac{1}{b}-\frac{1}{2c}\left(b,c>0\right)\left(3\right)\).

Dấu bằng xảy ra \(\Leftrightarrow b=c>0\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\frac{a^2}{c\left(a^2+c^2\right)}+\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}\ge\)\(\frac{1}{c}-\frac{1}{2a}+\frac{1}{a}-\frac{1}{2b}+\frac{1}{b}-\frac{1}{2c}\).

\(\Leftrightarrow K\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\).

\(\Leftrightarrow K\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\).

\(\Leftrightarrow K\ge\frac{1}{2}\left(\frac{ab+bc+ca}{abc}\right)\).

Mà \(ab+bc+ca=3abc\)(theo đề bài).

Do đó \(K\ge\frac{1}{2}.\frac{3abc}{abc}\).

\(\Leftrightarrow K\ge\frac{3abc}{2abc}\).

\(\Leftrightarrow K\ge\frac{3}{2}\).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\ab+bc+ca=3abc\end{cases}}\Leftrightarrow a=b=c=1\).

Vậy \(minK=\frac{3}{2}\Leftrightarrow a=b=c=1\).

AH
Akai Haruma
Giáo viên
14 tháng 5 2019

Lời giải:

Áp dụng BĐT Cauchy:

\(4=a^2+b^2\geq 2\sqrt{a^2b^2}=2|ab|\geq 2ab\Rightarrow ab\leq 2\)

\(P=a^4+b^4+4ab=(a^2+b^2)^2-2a^2b^2+4ab\)

\(=16-2(a^2b^2-2ab)=18-2(a^2b^2-2ab+1)\)

\(=18-2(ab-1)^2\)

\((ab-1)^2\geq 0, \forall ab\leq 2\Rightarrow P=18-2(ab-1)^2\leq 18\)

Vậy \(P_{\max}=18\Leftrightarrow \left\{\begin{matrix} ab=1\\ a^2+b^2=4\end{matrix}\right.\)

22 tháng 7 2019

\(\frac{a+bc}{b+c}+\frac{b+ac}{c+a}+\frac{c+ab}{a+b}\)

\(=\frac{a\left(a+b+c\right)+bc}{b+c}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{c\left(a+b+c\right)+ab}{a+b}\)

\(=\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}+\frac{\left(c+a\right)\left(c+b\right)}{a+b}\)

Áp dụng bđt Cô Si: \(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)

Tương tự,cộng theo vế và rút gọn =>đpcm

\(\frac{a+bc}{b+c}+\frac{b+ac}{c+a}+\frac{c+ab}{a+b}\)

\(=\frac{a\left(a+b+c\right)+bc}{b+c}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{c\left(a+b+c\right)+ab}{a+b}\)

\(=\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}+\frac{\left(c+a\right)\left(c+b\right)}{a+b}\)

Áp dụng bđt CÔ si

\(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)

.............