K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

\(\frac{x-2}{3}+\frac{x}{2}=\frac{2+x}{4}\)

\(\Leftrightarrow\frac{x-2}{3}.12+\frac{x}{2}.12=\frac{2+x}{4}.12\)

\(\Leftrightarrow4\left(x-2\right)+6x=3\left(x+2\right)\)

\(\Leftrightarrow10x-8=3x+6\)

\(\Leftrightarrow10x=3x+6+8\)

\(\Leftrightarrow10x-3x=3x+14-3x\)

\(\Leftrightarrow7x=14\)

\(\Leftrightarrow x=\frac{14}{7}=2\)

=> x = 2

19 tháng 6 2019

\(\frac{x-5}{x^2-16}+\frac{3}{x+4}=\frac{7}{x-4}\)

\(\Leftrightarrow\frac{x-5}{x^2-16}\left(x+4\right)\left(x-4\right)+\frac{3}{x+4}\left(x+4\right)\left(x-4\right)=\frac{7}{x-4}\left(x+4\right)\left(x-4\right)\)

\(\Leftrightarrow x-5+3\left(x-4\right)=7\left(x+4\right)\)

\(\Leftrightarrow4x-17=7x+28\)

\(\Leftrightarrow4x=7x+28+17\)

\(\Leftrightarrow4x=7x+45\)

\(\Leftrightarrow4x-7x=45\)

\(\Leftrightarrow-3x=45\)

\(\Leftrightarrow x=\frac{45}{-3}=-15\)

=> x = -15

\(\frac{2}{x^2-4}-\frac{x-1}{x\left(x-2\right)}+\frac{x-4}{x\left(x+2\right)}=0\)Đk \(x\ne\pm2;x\ne0\)

\(\Rightarrow\frac{2}{\left(x-2\right)\left(x+2\right)}-\frac{x-1}{x\left(x-2\right)}+\frac{x-4}{x\left(x+2\right)}=0\)

\(\Rightarrow\frac{2x-\left(x-1\right)\left(x+2\right)+\left(x-4\right)\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}=0\)

\(\Rightarrow2x-\left(x-1\right)\left(x+2\right)+\left(x-4\right)\left(x-2\right)=0\)

\(\Rightarrow2x-x^2-x+2+x^2-6x+8=0\)

\(\Rightarrow-5x+10=0\)

\(\Rightarrow-5x=-10\)

\(\Rightarrow x=2\)Loại 

Ko có gt x thỏa mãn

\(\frac{1}{3-x}-\frac{1}{x+1}=\frac{x}{x-3}-\frac{\left(x-1\right)^2}{x^2-2x-3}\)

\(\Rightarrow\frac{1}{3-x}-\frac{1}{x+1}=\frac{x}{x-3}-\frac{\left(x-1\right)^2}{x^2-3x+x-3}\)

\(\Rightarrow\frac{1}{3-x}-\frac{1}{x+1}=\frac{x}{x-3}-\frac{\left(x-1\right)^2}{\left(x-3\right)\left(x+1\right)}\)Đk \(x\ne3;x\ne-1\)

\(\Leftrightarrow\frac{1}{3-x}-\frac{1}{x+1}-\frac{x}{x-3}-\frac{\left(x-1\right)^2}{\left(x-3\right)\left(x+1\right)}=0\)

\(\Rightarrow-\frac{1}{x-3}-\frac{1}{x+1}-\frac{x}{x-3}+\frac{\left(x-1\right)^2}{\left(x-3\right)\left(x+1\right)}=0\)

\(\Rightarrow\frac{-1\left(x+1\right)-1\left(x-3\right)-x\left(x+1\right)+\left(x-1\right)^2}{\left(x-3\right)\left(x+1\right)}=0\)

\(\Rightarrow-\left(x+1\right)-\left(x-3\right)-x\left(x+1\right)+\left(x-1\right)^2=0\)

\(\Rightarrow x-1-x+3-x^2-x+x^2-2x+1=0\)

\(\Rightarrow-3x+3=0\)

\(\Rightarrow-3x=-3\)

\(\Rightarrow x=1\)

11 tháng 7 2019

\(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)

\(\Rightarrow\left(\frac{8}{x-8}+1\right)+\left(\frac{11}{x-11}+1\right)=\left(\frac{9}{x-9}+1\right)+\left(\frac{10}{x-10}+1\right)\)

\(\Rightarrow\frac{x}{x-8}+\frac{x}{x-11}=\frac{x}{x-9}+\frac{x}{x-10}\)

\(\Rightarrow\frac{x}{x-8}+\frac{x}{x-11}-\frac{x}{x-9}-\frac{x}{x-10}=0\)

\(\Rightarrow x\left(x-8+x-11-x+9-x+10\right)=0\)

\(\Rightarrow x.0=0\)

Vậy x thỏa mãn với mọi giá trị.

Câu còn lại bn lm tương tự nhé........ 

11 tháng 7 2019

DKXD: x khác 3;4;5;6

\(\frac{x}{x-3}-\frac{x}{x-5}=\frac{x}{x-4}-\frac{x}{x-6}\)

\(\Leftrightarrow\frac{x^2-5x-x^2+3x}{\left(x-3\right).\left(x-5\right)}-\frac{x^2-6x-x^2+4x}{\left(x-4\right).\left(x-6\right)}=0\)

\(\Leftrightarrow\frac{2x}{\left(x-4\right).\left(x-6\right)}-\frac{2x}{\left(x-3\right).\left(x-5\right)}=0\)

\(\Leftrightarrow2x.\left(\frac{\left(x-3\right).\left(x-5\right)-\left(x-4\right).\left(x-6\right)}{\left(x-4\right).\left(x-6\right).\left(x-3\right).\left(x-5\right)}\right)=0\)

\(\Leftrightarrow2x.\left(\frac{2x-9}{\left(x-4\right).\left(x-5\right).\left(x-3\right).\left(x-6\right)}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\2x-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{9}{2}\end{cases}}}\)

Vậy x=0 hoặc x=9/2

20 tháng 1 2020

\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)

<=> \(\left[x\left(x+1\right)\right]\left[\left(x-1\right)\left(x+2\right)\right]-24=0\)

<=> \(\left(x^2+x\right)\left(x^2+2x-x-2\right)-24=0\)

<=> \(\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)

Đặt t = x2 + x 

<=> t(t - 2) - 24 = 0

<=> t2 - 2t - 24 = 0

<=> t2 - 6t + 4t - 24 = 0

<=> (t + 4)(t - 6) = 0

<=> \(\orbr{\begin{cases}x^2+x+4=0\\x^2+x-6=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x^2+x+\frac{1}{4}\right)+\frac{15}{4}=0\\x^2+3x-2x-6=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\\left(x-2\right)\left(x+3\right)=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

Vậy S = {2; -3}

(lưu ý: thay "ktm" thành vô lý và giải thích thêm)

\(\left(x+3\right)^4+\left(x+5\right)^4=2\)

<=> (x + 4 - 1)4 + (x + 4 + 1)4 - 2 = 0

Đặt y = x + 4

<=> (y - 1)4 + (y + 1)4 - 2 = 0

<=> y4 - 4y3 + 6y2 - 4y + 1 + y4 + 4y3 + 6y2 + 4y + 1 - 2 = 0

<=> 2y4 + 12y2 = 0

<=> 2y2(y2 + 6) = 0

<=> \(\orbr{\begin{cases}y^2=0\\y^2+6=0\left(ktm\right)\end{cases}}\)

<=> y = 0

<=> x + 4 = 0

<=> x = -4

Vậy S = {-4}

20 tháng 1 2020

\(\frac{x^2+x+4}{2}+\frac{x^2+x+7}{3}=\frac{x^2+x+13}{5}+\frac{x^2+x+16}{6}\)

<=> \(\frac{x^2+x+4}{2}-3+\frac{x^2+x+7}{3}-3=\frac{x^2+x+13}{5}-3+\frac{x^2+x+16}{6}-3\)

<=> \(\frac{x^2+x+4-6}{2}+\frac{x^2+x+7-9}{3}=\frac{x^2+x+13-15}{5}+\frac{x^2+x+16-18}{6}\)

<=> \(\frac{x^2+x-2}{2}+\frac{x^2+x-2}{3}=\frac{x^2+x-2}{5}+\frac{x^2+x-2}{6}\)

<=> \(\left(x^2+2x-x-2\right)\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\right)=0\)

<=> (x + 2)(x - 1) = 0 (do \(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\ne0\))

<=> \(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)

Vậy S = {-2; 1}

câu cuối: + 3 vào sau các phân số của pt như trên

27 tháng 6 2019

TL:

a)

\(\frac{14\left(x-3\right)}{21}+\frac{7\left(x-5\right)}{21}=\frac{13x+4}{21}\) 

\(\frac{14x-42+7x-35}{21}=\frac{13x+4}{21}\) 

21x-77=13x+4

21x-13x=77+4

8x=81

x=\(\frac{81}{8}\) 

2 câu còn lại bn lm cách tương tự 

hc tốt

18 tháng 8 2020

1. \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)

\(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)

\(\Leftrightarrow35x-5+60x=96-6x\)

\(\Leftrightarrow95x-5=96-6x\)

\(\Leftrightarrow95x+6x=96+5\)

\(\Leftrightarrow101x=101\)

\(\Leftrightarrow x=1\)

2. \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) 

\(\Leftrightarrow3\left(10x+3\right)=36+4\left(6+8x\right)\)

\(\Leftrightarrow30x+9=36+24+32x\)

\(\Leftrightarrow30x+9=32x+60\)

\(\Leftrightarrow30x-32x=60-9\)

\(\Leftrightarrow-2x=51\)

\(\Leftrightarrow x=-\frac{51}{2}\)

3. \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)

\(\Leftrightarrow8x-3-2\left(3x-2\right)=2\left(2x-1\right)+x+3\)

\(\Leftrightarrow8x-3-6x+4=4x-2+x+3\)

\(\Leftrightarrow2x+1=5x+1\)

\(\Leftrightarrow2x=5x\)

\(\Leftrightarrow x=0\)

19 tháng 8 2020

4) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)

=> \(\frac{9-3x}{8}+\frac{10-2x}{3}=\frac{1-x}{2}-\frac{2}{1}\)

=> \(\frac{3\left(9-3x\right)}{24}+\frac{8\left(10-2x\right)}{24}=\frac{12\left(1-x\right)}{24}-\frac{48}{24}\)

=> \(\frac{27-9x}{24}+\frac{80-16x}{24}=\frac{12-12x}{24}-\frac{48}{24}\)

=> \(\frac{27-9x+80-16x}{24}=\frac{12-12x-48}{24}\)

=> 27 - 9x + 80 - 16x = 12 - 12x - 48

=> 27 - 9x + 80 - 16x - 12 + 12x + 48 = 0

=> (27 + 80 - 12 + 48) + (-9x - 16x + 12x) = 0

=> 143 - 13x = 0

=> 13x = 143

=> x = 11

5) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)

=> \(\frac{2x-6}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)

=> \(\frac{3\left(2x-6\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)

=> \(\frac{6x-18}{21}+\frac{7x-35}{21}-\frac{13x+4}{21}=0\)

=> \(\frac{6x-18+7x-35-13x-4}{21}=0\)

=> 6x - 18 + 7x - 35 - 13x - 4 = 0

=> (6x + 7x - 13x) + (-18 - 35 - 4) = 0

=> -57 = 0(vô nghiệm)

6) \(\frac{6x+5}{2}-\left(2x+\frac{2x+1}{2}\right)=\frac{10x+3}{4}\)

=> \(\frac{6x+5}{2}-\frac{10x+3}{4}=2x+\frac{2x+1}{2}\)

=> \(\frac{2\left(6x+5\right)}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{2\left(2x+1\right)}{4}\)

=> \(\frac{12x+10}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{4x+2}{4}\)

=> \(\frac{12x+10-\left(10x+3\right)}{4}=\frac{8x+4x+2}{4}\)

=> \(\frac{12x+10-10x-3}{4}=\frac{12x+2}{4}\)

=> \(12x+10-10x-3=12x+2\)

=> \(2x+10-3=12x+2\)

=> 2x + 10 - 3 - 12x - 2 = 0

=> (2x - 12x) + (10 - 3 - 2) = 0

=> -10x + 5 = 0

=> -10x = -5

=> x = 1/2

7) \(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{15}=0\)

=> \(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{x+7}{15}=0\)

=> \(\frac{6x-3}{15}-\frac{5x-10}{15}-\frac{x+7}{15}=0\)

=> \(\frac{6x-3-\left(5x-10\right)-\left(x+7\right)}{15}=0\)

=> 6x - 3 - 5x + 10 - x - 7 = 0

=> (6x - 5x - x) + (-3 + 10 - 7) = 0

=> 0x + 0 = 0

=> 0x = 0

=> x tùy ý

Bài 8 tự làm nhé

Làm đc 2 bài đầu chưa, t làm câu cuối cho, hai câu đầu dễ í mà

13 tháng 2 2020

Đặt \(x^2+x+10=u\)

Phương trình trở thành: \(\frac{u-6}{2}+\frac{u-3}{3}=\frac{u+3}{5}+\frac{u+6}{6}\)

\(\Rightarrow\frac{u}{2}-3+\frac{u}{3}-1=\frac{u}{5}+\frac{3}{5}+\frac{u}{6}+1\)

\(\Rightarrow\frac{u}{2}+\frac{u}{3}-\frac{u}{5}-\frac{u}{6}=3+1+1+\frac{3}{5}\)

\(\Rightarrow u\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\right)=\frac{28}{5}\)

\(\Rightarrow u.\frac{7}{15}=\frac{28}{5}\Rightarrow u=12\)

Lúc đó \(x^2+x+10=12\)

\(x^2+x-2=0\)

Ta có \(\Delta=1^2+4.2=9,\sqrt{\Delta}=3\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-1+3}{2}=1\\x=\frac{-1-3}{2}=-2\end{cases}}\)