chứng minh
\(\left(81^7-27^9-9^{13}\right)⋮40^5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)7^6+7^5-7^4=7^4x(7^2+7-1)=7^4x55
Vì 55 chia hết cho 55 nên;7^4x55 chia hết cho 55
hay (7^6+7^5-7^4)chia hết cho 55
b)81^7-27^9-9^93
=3^18-3^27-3^26
=3^24x(3^2-3-1)
=3^16x5
=3^22x3^4x5
=3^22x405
vì 405 chia hết cho 405 nên.......hay....
a)
74.(72+71-1)
=7.55
vay (76+75-1)chia hết cho 55
b) chứng minh tương tự nha
\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(9-3-1\right)=3^{26}.5\)chia hết cho 5
\(81^7-27^9-9^{13}\)
\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)\)
\(=3^{26}\cdot5⋮5\left(đpcm\right)\)
\(81^7-27^9-9^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)\)
\(=3^{24}\cdot9\cdot5⋮45\)
\(\Rightarrow3^{28}-3^{27}-3^{26}=3^{26}.\left(3^2-3-1\right)=3^{26}.5=3^{24}.9.5=3^{24}.45⋮45\)
\(P=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=5.3^{26}\) Chia hết cho 5
Ta có:817-279-913
=(34)7-(33)9-(32)13
=328-327-326=326.(32-3-1)=326.5=322.34.5=322.405 luôn chia hết cho 405
=>đpcm
7^6+7^5-7^4 = 7^4*(7^2+7-1) = 7^4*55
mình học lớp 5 mong bạn thông cảm và
#)Giải :
Ta có : \(\left(81^7-27^9-9^{13}\right)\)
\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}.3^2-3^{26}.3-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)\)
\(=3^{26}.5\)
\(=3^{22}.3^4.5\)
\(=3^{22}.405\)chia hết cho 405 ( đpcm )
Sửa đề: Chứng minh cái biểu thức trên chia hết cho 405.
Thật vậy,xét theo mod405:
\(81^7\equiv81^5.81^2\equiv81.81^2\equiv81\left(mod405\right)\)
\(27^9\equiv27^5.27^4\equiv162.81\equiv162\left(mod405\right)\)
\(9^{13}\equiv9^7.9^6\equiv324.81\equiv324\)
Suy ra \(81^7-27^9-9^{13}\equiv81-162-324\equiv-405\equiv0\left(mod405\right)\)
Hay ta có đpcm.