Cho biểu thức : \(A=x^2-3x\sqrt{y}+2y\)
a, Phân tích đa thức A thành nhân tử
b, Tính giá trị của A khi \(x=\frac{1}{\sqrt{5}-2}\)và \(y=\frac{1}{9+4\sqrt{5}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2
\(M=2y-3x\sqrt{y}+x^2=y-2x\sqrt{y}+x^2+y-x\sqrt{y}\\ =\left(\sqrt{y}-x\right)^2+\sqrt{y}\left(\sqrt{y}-x\right)\\ =\left(\sqrt{y}-x\right)\left(\sqrt{y}-x+\sqrt{y}\right)\\ =\left(\sqrt{y}-x\right)\left(2\sqrt{y}-x\right)\)
b
\(y=\dfrac{18}{4+\sqrt{7}}=\dfrac{18\left(4-\sqrt{7}\right)}{16-7}=\dfrac{72-18\sqrt{7}}{9}=\dfrac{72}{9}-\dfrac{18\sqrt{7}}{9}=8-2\sqrt{7}\\ =7-2\sqrt{7}.1+1=\left(\sqrt{7}-1\right)^2\)
Thế x = 2 và y = \(\left(\sqrt{7}-1\right)^2\) vào M được:
\(M=2\left(\sqrt{7}-1\right)^2-3.2.\sqrt{\left(\sqrt{7}-1\right)^2}+2^2\\ =2\left(8-2\sqrt{7}\right)-6.\left(\sqrt{7}-1\right)+4\\ =16-4\sqrt{7}-6\sqrt{7}+6+4\\ =26-10\sqrt{7}\)
1:
a: =>2x-2căn x+3căn x-3-5=2x-4
=>căn x-8=-4
=>căn x=4
=>x=16
b: \(\Leftrightarrow\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)-3\sqrt{x}\left(\sqrt{x}-2\right)=0\)
=>(căn x-2)(x-căn x+4)=0
=>căn x-2=0
=>x=4
Có :
\(x=\dfrac{1}{\sqrt{5}-2}\Rightarrow x^2=\dfrac{1}{\left(\sqrt{5}-2\right)^2}=\dfrac{1}{5-4\sqrt{5}+4}\\ =\dfrac{1}{9-4\sqrt{5}}\\ y=\dfrac{1}{5+4\sqrt{5}}=\dfrac{1}{5+4\sqrt{5}+2}=\dfrac{1}{\left(\sqrt{5}+2\right)^2}\\ \Rightarrow\sqrt{y}=\sqrt{\dfrac{1}{\left(\sqrt{5}+2\right)^2}}=\dfrac{1}{\sqrt{5}+2}\)
\(\Rightarrow A=\dfrac{1}{9-4\sqrt{5}}-3.\dfrac{1}{\sqrt{5}-2}.\dfrac{1}{\sqrt{5}+2}+\dfrac{2}{9+4\sqrt{5}}\\ =\dfrac{1}{9-4\sqrt{5}}-\dfrac{3}{5-4}+\dfrac{2}{9+4\sqrt{5}}\\ =\dfrac{9+\sqrt{5}+2\left(9-4\sqrt{5}\right)}{\left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right)}-3=\dfrac{27-4\sqrt{5}}{81-80-3}\\ =27-4\sqrt{5}-3=24-4\sqrt{5}\)
Vì với mỗi trận đấu đội thắng được cộng 2 điểm, đội thua không được điểm, 2 đội hoà đều được cộng 1 điểm
=>Sau mỗi trận đấu, tổng số điểm tăng thêm 2 điểm
Vì có n người tham gia=>có n.(n-1)/2 trận đấu=>Có tổng cộng n.(n-1) điểm
Ta sắp xếp n người theo số điểm tăng dần là S1,S2,...,Sn với \(S1\le S2\le...\le Sn;S1+S2+...+Sn=n.\left(n-1\right)\)
Gọi 2 số Sa và S(a+1) có khoảng cách lớn nhất=>\(S1\le...\le Sa\le S\left(a+1\right)\le...\le Sn\)
Đặt \(S1+...+Sa=b\le Sa+...+Sa=a.Sa=>Sa\ge\frac{b}{a}\)(1)
Vì S1+S2+...+Sn=n(n-1)
=>S(a+1)+...+Sn=n(n-1)-(S1+...+Sa)=n(n-1)-b
Do đó: \(S\left(a+1\right)+...+Sn=n\left(n-1\right)-b\ge S\left(a+1\right)+...+S\left(a+1\right)=\left(n-a\right).S\left(a+1\right)\)
\(=>S\left(a+1\right)\le\frac{n\left(n-1\right)-b}{n-a}\)(2)
Lại có: Xét a người S1,...Sa có tất cả: a(a-1)/2 trận đấu lẫn nhau
=>Sau những trận đấu lẫn nhau có tổng số điểm là a(a-1)
Vì a người S1,...Sa còn đấu với n-a người S(a+1),...,Sn
=>Tổng số điểm sẽ lớn hơn hoặc bằng a(a-1)=>\(b\ge a\left(a-1\right)\)(3)
Áp dụng (1),(2) và (3) ta có:
\(S\left(a+1\right)-S\left(a\right)\le\frac{n\left(n-1\right)-b}{n-a}-\frac{b}{a}=\frac{n\left(n-1\right)a-nb}{\left(n-a\right)a}\le\frac{n\left(n-1\right)a-n.a\left(a-1\right)}{\left(n-a\right)a}=\frac{n.a.\left(n-a\right)}{\left(n-a\right).a}=n\)Dấu "=" có thể xảy ra khi đội thấp nhất thua hết được 0 điểm, (n-1) đội còn lại hoà lẫn nhau và thắng đội thấp nhất nên được n điểm
Vậy khoảng cách lớn nhất giữa 2 đội xếp liên tiếp là n (điểm)
em lam bai nay nhung k bet viet can thuc nen mk qui uoc can la c nhe: vi du can7 la c7
a) M = x2 - 2xcy +y - xcy +y = (x -cy)2 - cy(x - cy) = (x - cy)(x-cy -cy) = (x-cy)(x-2cy)
b) chị thay vao rui tinh nhu bai toan don gian
em hoc lop8 chuyen toantin
\(y=\frac{1}{\sqrt{9+4\sqrt{5}}}=\frac{1}{\sqrt{\left(\sqrt{5}+2\right)^2}}=\frac{1}{\sqrt{5}+2}\)
\(A=x^2-3x\sqrt{y}+2y=\left(x-2\sqrt{y}\right)\left(x-\sqrt{y}\right)\)
\(=\left(\frac{1}{\sqrt{5}-2}-\frac{2}{\sqrt{5}+2}\right)\left(\frac{1}{\sqrt{5}-2}-\frac{1}{\sqrt{5}+2}\right)\)
\(=\left[\frac{\sqrt{5}+2-2\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\right]\left[\frac{\sqrt{5}+2-\left(\sqrt{5}-2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\right]\)
\(=\left[\frac{-\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\right]\left(\frac{4}{5-4}\right)\)
\(=\left(\frac{-1}{\sqrt{5}-2}\right).4=\frac{-4}{\sqrt{5}-2}\)
a, \(A=x^2-x\sqrt{y}-2x\sqrt{y}+2y\)
\(=x\left(x-\sqrt{y}\right)-2\sqrt{y}\left(x-\sqrt{y}\right)\)
\(=\left(x-2\sqrt{y}\right)\left(x-\sqrt{y}\right)\)
\(a,\)\(A=x^2-3x\sqrt{y}+2y\)
\(=x^2-2x\sqrt{y}-x\sqrt{y}+2y\)
\(=x\left(x-2\sqrt{y}\right)-\sqrt{y}\left(x-2\sqrt{y}\right)\)
\(=\left(x-\sqrt{y}\right)\left(x-2\sqrt{y}\right)\)
\(b,\)Ta có : \(x=\frac{1}{\sqrt{5}-2}=\frac{\sqrt{5}+2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}=\frac{\sqrt{5}+2}{5-4}=\sqrt{5}+2\)
\(y=\frac{1}{9+4\sqrt{5}}=\frac{9-4\sqrt{5}}{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}=\frac{9-4\sqrt{5}}{81-80}=9-4\sqrt{5}=\left(\sqrt{5}-2\right)^2\)
\(\Rightarrow A=\left[\sqrt{5}+2-\sqrt{\left(\sqrt{5}-2\right)^2}\right]\left[\sqrt{5}+2-2\sqrt{\left(\sqrt{5}-2\right)^2}\right]\)
\(=\left(\sqrt{5}+2-\sqrt{5}-2\right)\left(\sqrt{5}+2-2\sqrt{5}+4\right)\)
\(=4\left(6-\sqrt{5}\right)\)
\(=24-4\sqrt{5}\)