Tìm x,y nguyên biết:
\(\frac{x}{4}-\frac{1}{y}=\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)
\(\Leftrightarrow\left(\frac{x-2}{27}-1\right)+\left(\frac{x-3}{26}-1\right)+\left(\frac{x-4}{25}-1\right)+\left(\frac{x-5}{24}-1\right)\)\(+\left(\frac{x-44}{5}+3\right)=1-1\)
\(\Leftrightarrow\frac{x-29}{27}+\frac{x-29}{26}+\frac{x-29}{25}+\frac{x-29}{24}\)\(+\frac{x-29}{5}=0\)
\(\Leftrightarrow\left(x-29\right)\left(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\right)=0\)
Mà \(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\ne0\)
=> x - 29 = 0
=> x = 29.
\(\frac{x}{4}-\frac{1}{y}=\frac{1}{2}\)
\(\frac{x}{4}-\frac{1}{2}=\frac{1}{y}\)
\(\frac{x}{4}-\frac{2}{4}=\frac{1}{y}\)
\(\frac{x-2}{4}=\frac{1}{y}\)
\(y\left(x-2\right)=4\)
Ta có:4=2.2=(-2).(-2)=4.1=1.4=(-1).(-4)=(-4).(-1)
Do đó ta có bảng sau:
y | 4 | 1 | 2 | -2 | -4 | -1 |
x-2 | 1 | 4 | 2 | -2 | -1 | -4 |
x | 3 | 6 | 4 | 0 | 1 | -2 |
Vậy cặp (x;y) TM là:(3;4)(6;1)(4;2)(0;-2)(1;-4)(-2;-1)
\(\frac{x}{4}-\frac{1}{y}=\frac{1}{2}\\ \Rightarrow\frac{xy}{4y}-\frac{4}{4y}=\frac{1}{2}\\ \Rightarrow\frac{xy-4}{4y}=\frac{1}{2}\\ \Rightarrow2\left(xy-4\right)=4y\\ \Rightarrow2xy-8=4y\\ \Rightarrow2xy-4y-8=0\\ \Rightarrow y\left(2x-4\right)=8\)
2x-4 | 1 | 8 | 2 | 4 | -1 | -8 | -2 | -4 |
y | 8 | 1 | 4 | 2 | -8 | -1 | -4 | -2 |
x | 6 | 3 | 4 | -2 | 1 | 0 |
Vậy (x;y)=(6;1);(3;4);(4;2);(-2;-1);(1;-4);(0;-2)
1) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
\(\Leftrightarrow\frac{x+y+z}{xyz}=1\)
\(\Leftrightarrow x+y+z=xyz\)
Không mất tính tổng quát, giả sử: \(x\le y\le z\)
Lúc đó: \(x+y+z\le3z\)
\(\Leftrightarrow xyz\le3z\Leftrightarrow xy\le3\)
\(\Rightarrow xy\in\left\{1;2;3\right\}\)
* Nếu xy = 1 thì x = y = 1\(\left(x,y\inℤ\right)\). \(\Rightarrow2+z=z\)(vô lí)
* Nếu xy = 2 thì x = 1, y = 2 (Do \(x\le y\),\(x,y\inℤ\))\(\Rightarrow3+z=2z\Leftrightarrow z=3\)
* Nếu xy = 3 thì x = 1, y = 3(Do \(x\le y\),\(x,y\inℤ\)) \(\Rightarrow4+z=3z\Leftrightarrow z=2\)
Vậy x,y,z là các hoán vị của (1,2,3)
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1-2y}{8}\)
\(\Leftrightarrow40=x\left(1-2y\right)\)
Đến đây bạn lập bảng ha !
=> \(\frac{xy-4}{4y}=\frac{1}{2}\) => 2(xy-4) = 1.4y => 2xy - 8 = 4y => 2xy - 4y = 8 => 2y(x - 2) = 8 => y(x -2) = 4
x;y nguyên nên y \(\in\) Ư(4) = {-4;-2;-1;1;2;4}
Tương ứng x - 2 \(\in\) {-1;-2;-4;4;2;1} => x \(\in\) {1;0;-2;6;4;3}
Vậy...
Ta có: \(\frac{x}{4}-\frac{1}{y}=\frac{1}{2}\)
=>\(\frac{1}{y}=\frac{x}{4}-\frac{1}{2}\)
=>\(\frac{1}{y}=\frac{x-2}{4}\)
=>
y.(x-2)=4
Ta thấy: 4=1.4=2.3=(-1).(-4)=(-2).(-2)
x-2 | 1 | 4 | -1 | -4 | 2 | -2 |
x | 3 | 6 | 1 | -2 | 4 | 0 |
y | 4 | 1 | -4 | -1 | 2 | -2 |
Vậy (x,y)=(3,4),(6,1),(1,-4),(-2,-1),(4,2),(0,-2)
\(\frac{x-1}{3}+\frac{1}{y}=\frac{-1}{6}\)
\(\frac{\left(x-1\right)y}{3y}+\frac{3}{3y}=\frac{-1}{6}\)
\(\frac{\left(x-1\right)y+3}{3y}=\frac{-1}{6}\)
\(\frac{\left(x-1\right)y}{y}=\frac{\left(-1\right)-3}{6:3}\)
\(x-1=-2\)
\(x=\left(-2\right)+1\)
\(x=-1\)
\(\frac{x-1}{3}+\frac{1}{y}=\frac{-1}{6}\)
\(\frac{\left(x-1\right)y}{3y}+\frac{3}{3y}=\frac{-1}{6}\)
\(\frac{\left(x-1\right)y+3}{3y}=\frac{-1}{6}\)
\(x-1=\frac{\left(-1\right)-3}{6:3}\)
\(x-1=-2\)
\(x=\left(-2\right)+1\)
\(x=-1\)
a) Ta có: \(\left(x-1\right)^2\ge\)0 \(\forall\)x
\(\left|y+2\right|\ge0\)\(\forall\) y
=> \(\left(x-1\right)^2+\left|y+2\right|\ge0\)\(\forall\)x,y
=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\y+2=0\end{cases}}\)
=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy ...
b) Ta có: \(\frac{1}{2}-\frac{y}{3}=\frac{2}{x}\)
=> \(\frac{3-2y}{6}=\frac{2}{x}\)
=> \(x\left(3-2y\right)=12\)
=> x; 3 - 2y \(\in\)Ư(12) = {1; -1; 2; -2; 3; -3; 4; -4; 6; -6; 12; -12}
Do 3 - 2y là số lẽ , mà x,y \(\in\)Z
=> 3 - 2y \(\in\) {1; -1; 3; -3}
Lập bảng :
3 - 2y | 1 | -1 | 3 | -3 |
x | 12 | -12 | 4 | -4 |
y | 1 | 2 | 0 | 3 |
Vậy ...