giá trị nhỏ nhất của biểu thức A=x2+y2-6x là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
K = x 2 – 6 x + y 2 – 4 y + 6 = x 2 – 2 x . 3 + 9 + y 2 – 2 . y . 2 + 4 – 7 = ( x – 3 ) 2 + ( y – 2 ) 2 – 7
Vì ( x – 3 ) 2 ≥ 0 ; ( y – 2 ) 2 ≥ 0 ; Ɐx; y nên ( x – 3 ) 2 + ( y – 2 ) 2 – 7 ≥ -7
Dấu “=” xảy ra khi ó x − 3 2 = 0 và y − 2 2 = 0 hay x = 3 và y = 2
Vậy giá trị nhỏ nhất của K là -7 khi x = 3; y = 2
Đáp án cần chọn là: C
1:
=x^2-6x+9-4=(x-3)^2-4>=-4
Dấu = xảy ra khi x=3
3: =-y^2-4y-4+13
=-(y+2)^2+13<=13
Dấu = xảy ra khi y=-2
4: D=x^2-8>=-8
Dấu = xảy ra khi x=0
\(C=x^2+y^2-x+6x+10\\ =x^2+5x+y^2+10\\ =x^2+2\cdot\dfrac{5}{2}x+\dfrac{25}{4}+y^2+\dfrac{15}{4}\\ =\left(x+\dfrac{5}{2}\right)^2+y^2+\dfrac{15}{4}\)
Mà \(\left(x+\dfrac{5}{2}\right)^2+y^2\ge0\forall x,y\)
\(\Rightarrow\left(x+\dfrac{5}{2}\right)^2+y^2+\dfrac{15}{4}\ge\dfrac{15}{4}\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{5}{2}=0\Leftrightarrow x=-\dfrac{5}{2}\\y=0\end{matrix}\right.\)
Vậy GTNN của C là \(\dfrac{15}{4}\) khi x = \(-\dfrac{5}{2}\) và y = 0
Chọn B.
Phương pháp:
Biến đổi đẳng thức đã cho để đưa về dạng phương trình đường tròn (C) tâm I bán kính R.
Từ đó ta đưa bài toán về dạng bài tìm M x ; y ∈ C để O M - a lớn nhất hoặc nhỏ nhất.
Xét các trường hợp xảy ra để tìm a.
Cách giải:
A+1 = x^2+6x+9/x^2+1 = (x+3)^2/x^2+1 >= 0
=> A >= -1
Dấu "=" xảy ra <=> x+3=0 <=> x=-3
Vậy GTNN của A = -1 <=> x=-3
Tk mk nha