RÚT GỌN
\(\frac{\sqrt{6-\sqrt{11}}}{\sqrt{22}-\sqrt{2}}+\frac{6}{\sqrt{2}}-\frac{3}{\sqrt{2}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+1}\left(\frac{2\sqrt{3}+\sqrt{18}+2\sqrt{3}-\sqrt{18}}{4-6}\right)-\frac{1}{\sqrt{2}}.\)
\(=\frac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}-\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+1}.\left(2\sqrt{3}\right)-\frac{1}{\sqrt{2}}\)
\(=\frac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}-\frac{2\sqrt{6}-6}{\sqrt{2}+1}-\frac{1}{\sqrt{2}}\)
\(\frac{\sqrt{2+\sqrt{3}}}{2}:\left(\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right)\)
\(=\frac{\sqrt{2+\sqrt{3}}}{2}:\left(\frac{\sqrt{6\left(2+\sqrt{3}\right)}-4+\sqrt{2\left(2+\sqrt{3}\right)}}{2\sqrt{6}}\right)\)
\(=\frac{\sqrt{2+\sqrt{3}}}{2}.\left(\frac{2\sqrt{6}}{\sqrt{12+6\sqrt{3}}-4+\sqrt{4+2\sqrt{3}}}\right)\)
\(=\frac{\sqrt{6\left(2+\sqrt{3}\right)}}{\left|\sqrt{3}+3\right|-4+\left|\sqrt{3}+1\right|}\)
\(=\frac{\left|\sqrt{3}+3\right|}{\sqrt{3}+3-4+\sqrt{3}+1}\)
\(=\frac{\sqrt{3}+3}{2\sqrt{3}}\)
\(\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7-2\sqrt{10}}}\)
\(=\frac{\sqrt{3}+\sqrt{\left(\sqrt{2}\right)^2+6\sqrt{2}+9}-\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{6}+\left(\sqrt{3}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5}+1}-\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{10}+\left(\sqrt{2}\right)^2}}\)
\(=\frac{\sqrt{3}+\sqrt{\left(\sqrt{2}+3\right)^2}-\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}}\)
\(=\frac{\sqrt{3}+\sqrt{2}+3-\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{5}+1-\sqrt{5}+\sqrt{2}}\)
\(=\frac{3}{2\sqrt{2}+1}\)
B=\(\frac{6-6\sqrt{3}}{1-\sqrt{3}}+\frac{3\sqrt{3}+3}{\sqrt{3}+1}=\frac{6\left(1-\sqrt{3}\right)}{1-\sqrt{3}}+\frac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=6+3=9\)
C=\(\frac{3+\sqrt{3}}{\sqrt{3}}+\frac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}=\frac{3\left(1+\sqrt{3}\right)}{\sqrt{3}}+\frac{\sqrt{3}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}=\sqrt{3}+1-\sqrt{3}=1\)
D=\(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}=\frac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
E=\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}=\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}=\sqrt{3}+\frac{1}{2-\sqrt{3}}=\frac{2\sqrt{3}-1}{2-\sqrt{3}}\)
a) \(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{49-48}=14\)
b) \(=\frac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\frac{5\sqrt{6}}{5}+\frac{4\sqrt{3}-12\sqrt{2}}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}\)
\(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)
=\(\frac{1}{2}\sqrt{3.4^2}-2\sqrt{3.5^2}-\sqrt{\frac{33}{11}}+5\sqrt{\frac{4}{3}}\)
\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}+10\sqrt{\frac{1}{3}}\)
\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}+\frac{10}{3}\sqrt{3}\)
\(=\left(2-10-1+\frac{10}{3}\right)\sqrt{3}\)
\(=\frac{-17}{3}\sqrt{3}\)
\(\sqrt{150}+\sqrt{1,6}.\sqrt{60}+4,5\sqrt{2\frac{2}{3}}-\sqrt{6}\)
\(=\sqrt{6.5^2}+\sqrt{96}+4,5\sqrt{\frac{8}{3}}-\sqrt{6}\)
\(=5\sqrt{6}+\sqrt{6.4^2}+4,5\frac{\sqrt{24}}{3}-\sqrt{6}\)
\(=5\sqrt{6}+4\sqrt{6}+\frac{4,5.2\sqrt{6}}{3}-\sqrt{6}\)
\(=8\sqrt{6}+3\sqrt{6}\)
\(=11\sqrt{6}\)
Tự hòi tự trl :D ?
\(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)
\(=\frac{1}{2}\sqrt{16.3}-2.5\sqrt{3}-\sqrt{3}-\frac{10}{3}\sqrt{3}\)
\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}-\frac{10}{3}\sqrt{3}\)
\(=-9\sqrt{3}+\frac{10}{3}\sqrt{3}=\left(-9+\frac{10}{3}\right)\sqrt{3}\)
\(=-\frac{17}{3}\sqrt{3}\)
\(\sqrt{150}+\sqrt{1,6}.\sqrt{60}+4,5.\sqrt{2\frac{2}{3}}-\sqrt{6}\)
\(=\sqrt{25.6}+\sqrt{1,6.60}+4,8\sqrt{\frac{8}{3}}-\sqrt{6}\)
\(=5\sqrt{6}+\sqrt{16.6}+4,5.\frac{1}{3}\sqrt{3^2.\frac{4.2}{3}}-\sqrt{6}\)
\(=9\sqrt{6}+3\sqrt{6}-\sqrt{6}=11\sqrt{6}\)
với n >0, ta có :
\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=n+1-n=1\Rightarrow\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}\)
Gọi biểu thức đã cho là A
\(A=\frac{1}{-\left(\sqrt{2}-\sqrt{1}\right)}-\frac{1}{-\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{1}{-\left(\sqrt{8}-\sqrt{7}\right)}-\frac{1}{-\left(\sqrt{9}-\sqrt{8}\right)}\)
\(A=-\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-...-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{9}-\sqrt{8}}\)
\(A=-\left(\sqrt{2}+\sqrt{1}\right)+\left(\sqrt{3}+\sqrt{2}\right)-...-\left(\sqrt{8}+\sqrt{7}\right)+\left(\sqrt{9}+\sqrt{8}\right)\)
\(A=-\sqrt{1}+\sqrt{9}=2\)
= \(\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
=\(\frac{\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}}\)
= \(\frac{\sqrt{3}+3+\sqrt{2}-\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{2}+\sqrt{5}+1-\left(\sqrt{2}+\sqrt{5}\right)}\)
= \(\frac{\sqrt{3}+3+\sqrt{2}-\sqrt{5}-\sqrt{2}}{\sqrt{2}+\sqrt{5}+1-\sqrt{2}-\sqrt{5}}\)
= \(\sqrt{3}+\sqrt{5}+3\)
KÉO XUỐNG SẼ CÓ ĐÁP ÁN
Tò mò thì kéo đi
Phê3
tiếp đi
..............................
HẾT
\(\frac{\sqrt{12-2\sqrt{11}}}{2\left(\sqrt{11}-1\right)}+3\sqrt{2}-3\left(\sqrt{2}-1\right)\)
\(=\frac{\sqrt{\left(\sqrt{11}-1\right)^2}}{2\left(\sqrt{11}-1\right)}+3\sqrt{2}-3\sqrt{2}+3\)
\(=\frac{1}{2}+3=\frac{7}{2}\)