K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 6 2019

Bạn chưa có yêu cầu đề bài.

a, x2-7=\(\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)

b, x2-3=\(\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)

Học tốt!!!!!!!!!!

16 tháng 6 2019

a/ \(x^2-7\)

\(=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)

b/ \(x^2-3\)

\(=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)

c/ \(x^2-2\sqrt{13}x+13\)

\(=\left(x-\sqrt{13}\right)^2\)

Mấy bài này áp dụng HĐT nhé bạn :3

17 tháng 6 2019

a)    \(x^2-2\sqrt{2}x+2\)

\(=\left(x-\sqrt{2}\right)^2\)

17 tháng 6 2019

b)    \(x^2+2\sqrt{5}x+5\)

\(=\left(x+5\right)^2\)

12 tháng 6 2019

\(a,\)\(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}\)

\(đkxđ\Leftrightarrow\sqrt{\left(x-1\right)^2}\ge0\)

\(\Rightarrow x-1\ge0\Rightarrow x\ge1\)

\(b,\)\(\sqrt{x+3}+\sqrt{x+9}\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}x+3\ge0\\x+9\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-3\\x\ge-9\end{cases}}}\)

\(\Rightarrow x\ge-3\)

12 tháng 6 2019

\(c,\)\(\sqrt{\frac{x-1}{x+2}}\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}x+2\ne0\\\frac{x-1}{x+2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-2\\\frac{x-1}{x+2}\ge0\end{cases}}}\)

\(\frac{x-1}{x+2}\ge0\)\(\Rightarrow\orbr{\begin{cases}x-1\ge0;x+2>0\\x-1\le0;x+2< 0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x\ge-1;x>-2\\x\le1;x< 2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x\ge-1\\x< 2\end{cases}}\)

Vậy căn thức xác định khi x \(\ge\)-1 hoawck x < 2

AH
Akai Haruma
Giáo viên
22 tháng 11 2021

Bạn cần viết đề bài bằng công thức toán để được hỗ trợ tốt hơn.

20 tháng 8 2023

D, b nhân căn bậc 5 phần ab với a<0, b<0

a: \(13\sqrt{11}=\sqrt{13^2\cdot11}=\sqrt{1859}\)

b: \(-8\sqrt{2}=-\sqrt{64\cdot2}=-\sqrt{128}\)

c: \(a\sqrt{5a}=\sqrt{a^2\cdot5a}=\sqrt{5a^3}\)

d: \(b\sqrt{\dfrac{5}{ab}}=-\sqrt{b^2\cdot\dfrac{5}{ab}}=-\sqrt{\dfrac{5b}{a}}\)

21 tháng 9 2020

Bài 2 : 

a) \(A=\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{7+2\sqrt{7}+1}-\sqrt{7}\)

\(=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{7}=\left|\sqrt{7}+1\right|-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)

b) \(B=\sqrt{7+4\sqrt{3}}-2\sqrt{3}=\sqrt{4+4\sqrt{3}+3}-2\sqrt{3}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-2\sqrt{3}=\left|2+\sqrt{3}\right|-2\sqrt{3}\)

\(=2+\sqrt{3}-2\sqrt{3}=2-\sqrt{3}\)

c) \(C=\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}\)

\(=\sqrt{13-2\sqrt{13}+1}+\sqrt{13+2\sqrt{13}+1}\)

\(=\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}\)

\(=\left|\sqrt{13}-1\right|+\left|\sqrt{13}+1\right|\)

\(=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)

d) \(D=\sqrt{22-2\sqrt{21}}+\sqrt{22+2\sqrt{21}}\)

\(=\sqrt{21-2\sqrt{21}+1}+\sqrt{21+2\sqrt{21}+1}\)

\(=\sqrt{\left(\sqrt{21}-1\right)^2}+\sqrt{\left(\sqrt{21}+1\right)^2}\)

\(=\left|\sqrt{21}-1\right|+\left|\sqrt{21}+1\right|\)

\(=\sqrt{21}-1+\sqrt{21}+1=2\sqrt{21}\)

21 tháng 9 2020

bạn j ơi bạn giải đúng k vậy

30 tháng 7 2018

Ta có:

\(\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)\)

\(=x^2-6x+13-\left(x^2-6x+10\right)\)

\(=3\)

mà  \(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}=1\)

=>   \(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}=3\) 

31 tháng 7 2018

Em chưa hiểu ở dòng thứ 3,chị có thể giải thích cho em với được ko ạ

22 tháng 9 2016

Nhận xét x > 0

Ta có : \(x^2=5+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}}\)

\(\Leftrightarrow x^2-5=\sqrt{13+\sqrt{5+\sqrt{13+....}}}\)

\(\Leftrightarrow\left(x^2-5\right)^2=13+\sqrt{5+\sqrt{13+...}}\)

\(\Leftrightarrow\left(x^2-5\right)^2-13=x\)

\(\Leftrightarrow x^4-10x^2-x+12=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^3+3x^2-x-4\right)=0\)

Vì pt \(x^3+3x^2-x-4=0\) luôn có nghiệm \(x< 2\) mà \(x>\sqrt{5}>\sqrt{4}=2\)

Vậy x = 3