K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tham khảo bài làm :

Câu hỏi của êfe - Toán lớp 7 - Học toán với OnlineMath

26 tháng 11 2021

A) Vì 2013 là số lẻ nên (\(1^{2013}+2^{2013}\)+....\(n^{2013}\)): (1+2+...+n)

Hay( \(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)) :\(\dfrac{n\left(n+1\right)}{2}\)

=>2(\(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)):n(n+1)(đpcm)

B)

Do 1 lẻ , \(2q^2\) chẵn nên p lẻ

p2−1⇔\(2q^2\)(p−1)(p+1)=\(2q^2\)

p lẻ nên p−1 và p+1đều chẵn ⇒(p−1)(p+1)⋮4

\(q^2\):2 =>q:2 =>q=2 

\(q^2\)=2.2\(^2\)+1=9=>q=3

 Chắc đúng vì hôm trước cô mik giải thik v 
26 tháng 11 2021

a, Vì 2013 là số lẻ nên (\(^{1^{2013}+2^{2013}+...n^{2013}}\))⋮(1+2+...+n)

=>\(\left(1^{2013}+2^{2013}+...+n^{2013}\right)\)\(\dfrac{n\left(n+1\right)}{2}\)

=>\(2\left(1^{2013}+2^{2013}+...+n^{2003}\right)\)⋮n(n+1)

đpcm

16 tháng 2 2018

Do 2013 là số lẻ nên \(\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮\left(1+2+3+....+n\right)\)

Hay \(\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮\frac{n\left(n+1\right)}{2}\)

\(\Rightarrow2\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮n\left(n+1\right)\) (đpcm)

16 tháng 2 2018

Vì sao 2013 là số lẻ thì \(1^{2013}+2^{2013}+.....+n^{2013}⋮1+2+3+...+n\)

19 tháng 11 2016

Đặt \(A=\left(n+2012^{2013}\right)+\left(n+2013^{2012}\right)\)
\(A=2n+\left(2012^4\right)^{503}.2012+\left(2013^4\right)^{503}\)

\(A=2n+\left(...6\right)+\left(...1\right)\)

Ta có : 2n là số chẵn

\(2012^{2013}\) là số chẵn

\(2013^{2012}\) là số lẻ

\(=>A=2n+2012^{2013}+2013^{2012}\) là số lẻ

Vì A là số lẻ => \(\left(n+2013^{2012}\right);\left(n+2012^{2013}\right)\) sẽ có 1 số chẵn và 1 số lẻ

=> \(\left(n+2012^{2013}\right)\left(n+2013^{2012}\right)\) là số chẵn nên chia hết cho 2 ( đpcm )

29 tháng 11 2017

1)Ta co A=52014-52013+...-5+1

=>5A=52015-52014+...+5

=>6A=52015+1

=>6A-1=52015

=>5n=52015

=>n=2015

Tham khảo bài làm :

Câu hỏi của êfe - Toán lớp 7 - Học toán với OnlineMath

6 tháng 2 2020

TH1: n = 2k (k thuộc N):

Ta có: (n + 20122013)(n + 20132012) = (2k + 20122013)(2k + 20132012).

Vì: (2k + 20122013) là số chẵn nên suy ra: (2k + 20122013)(2k + 20132012) ⋮ 2    (1)

TH2: n = 2k + 1 (k thuộc N):

Ta có: (n + 20122013)(n + 20132012) = (2k + 1 + 20122013)(2k  + 1 + 20132012).

Vì: (2k + 1 + 20132012) là số chẵn nên suy ra: (2k + 20122013)(2k + 20132012) ⋮ 2    (2)

Từ (1) và (2) suy ra: (n + 20122013)(n + 20132012) ⋮ 2.