K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

hay \(AE\cdot AC=AB\cdot AF\)

b: Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC

Suy ra: \(\widehat{AEF}=\widehat{ABC}\)

26 tháng 9 2021

2 ý này mik lm rồi

a) Xét ΔEHC vuông tại E và ΔFHB vuông tại F có 

\(\widehat{EHC}=\widehat{FHB}\)(hai góc đối đỉnh)

Do đó: ΔEHC\(\sim\)ΔFHB(g-g)

b) Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

nên BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Suy ra: \(\widehat{EFC}=\widehat{EBC}\)(hai góc nội tiếp cùng chắn cung EC)

c) Xét ΔADB vuông tại D và ΔCFB vuông tại F có 

\(\widehat{FBD}\) chung

Do đó: ΔADB\(\sim\)ΔCFB(g-g)

Suy ra: \(\dfrac{BA}{BC}=\dfrac{BD}{BF}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{BA}{BD}=\dfrac{BC}{BF}\)

Xét ΔBAC và ΔBDF có 

\(\dfrac{BA}{BD}=\dfrac{BC}{BF}\)(cmt)

\(\widehat{ABC}\) chung

Do đó: ΔBAC\(\sim\)ΔBDF(C-g-c)

Suy ra: \(\widehat{ACB}=\widehat{BFD}\)(hai góc tương ứng)

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

=>ΔABE đồng dạng với ΔACF

=>AB/AC=AE/AF

=>AE/AB=AF/AC và AE*AC=AB*AF

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng với ΔABC

=>góc AEF=góc ACB

c; góc AFH=góc AEH=90 độ

=>AFHE nội tiếp (I)

=>IF=IE

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp (M)

=>MF=ME

=>MI là trung trực của EF

=>MI vuông góc EF

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc A chung

=>ΔABD đồng dạng với ΔACE

b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC

=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC

=>góc ADE=góc ABC

 

a: Xét ΔAEF và ΔADC có

AE/AD=AF/AC
góc A chung

=>ΔAEF đồng dạng với ΔADC

b: Xét ΔDIF và ΔEIC có

góc IFD=góc ICE

góc DIF=góc CIE

=>ΔDIF đồng dạng với ΔEIC

=>\(\dfrac{S_{DIF}}{S_{EIC}}=\left(\dfrac{DF}{EC}\right)^2=4\)