Cho 2 điểm B,C cố định và điểm A di động sao cho tam giác ABC có 3 góc nhọn. Gọi K là giao điểm của AH và EF.
a) CM: Tam giác AEF đồng dạng với Tam giác ACF
Tg AEF đồng dạng vs Tg ABC
b) CM AD.HK=AK.HD
c) TÌm max của AD.HD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
hay \(AE\cdot AC=AB\cdot AF\)
b: Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC
Suy ra: \(\widehat{AEF}=\widehat{ABC}\)
a) Xét ΔEHC vuông tại E và ΔFHB vuông tại F có
\(\widehat{EHC}=\widehat{FHB}\)(hai góc đối đỉnh)
Do đó: ΔEHC\(\sim\)ΔFHB(g-g)
b) Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
nên BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Suy ra: \(\widehat{EFC}=\widehat{EBC}\)(hai góc nội tiếp cùng chắn cung EC)
c) Xét ΔADB vuông tại D và ΔCFB vuông tại F có
\(\widehat{FBD}\) chung
Do đó: ΔADB\(\sim\)ΔCFB(g-g)
Suy ra: \(\dfrac{BA}{BC}=\dfrac{BD}{BF}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{BA}{BD}=\dfrac{BC}{BF}\)
Xét ΔBAC và ΔBDF có
\(\dfrac{BA}{BD}=\dfrac{BC}{BF}\)(cmt)
\(\widehat{ABC}\) chung
Do đó: ΔBAC\(\sim\)ΔBDF(C-g-c)
Suy ra: \(\widehat{ACB}=\widehat{BFD}\)(hai góc tương ứng)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AE/AB=AF/AC và AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ACB
c; góc AFH=góc AEH=90 độ
=>AFHE nội tiếp (I)
=>IF=IE
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp (M)
=>MF=ME
=>MI là trung trực của EF
=>MI vuông góc EF
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc A chung
=>ΔABD đồng dạng với ΔACE
b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
a: Xét ΔAEF và ΔADC có
AE/AD=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔADC
b: Xét ΔDIF và ΔEIC có
góc IFD=góc ICE
góc DIF=góc CIE
=>ΔDIF đồng dạng với ΔEIC
=>\(\dfrac{S_{DIF}}{S_{EIC}}=\left(\dfrac{DF}{EC}\right)^2=4\)