cho 2 so x,y >0 biet \(\frac{x}{2}=\frac{y}{4}\)va \(^{x^4y^2=16}\).khi do y la
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
x + 5/4 = 0 => x = -5/4
x - 19/7 = 0 => x = 19/7
Lập bảng:
P/s: Edogawa Conan: Cái bảng của bạn cho mình cop nha! Thanks! Tí mik trả bạn 1 ! OK?
x | -5/4 19/7 |
x + 5/4 | - 0 + / + |
x - 19/7 | - / - 0 + |
( x + 5/4 ) ( x - 19/7 ) | + 0 - 0 + |
Suy ra -5/4 < x < 19/7
Hay -1,25 < x < 2,(714285)
Mặt khác x thuộc Z nên x = -1, 0, 1, 2
Câu 2:
2xy + 4y = 6
2 (xy + 2y) = 6
=> xy + 2y = 6 / 2 = 3
=> xy + 2y = 3
=> y (x + 2) = 3
Từ đó lập bảng phân tích 3 = 1 . 3 = (-1) . (-3)
Mik khỏi lập bảng!
Từ bảng trên ta có y = {-3; -1; 1; 3}
Câu 3:
x + y = 8, x + z = 10, y + z = 12
=> (x + y) + (x + z) + (y + z) = 8 + 10 + 12 = 30
=> 2(x + y + z) = 30
=> x + y + z = 15
Đến đây thì dễ rồi! ^^
Câu 4:
(x + 3) = +5 Hoặc -5
Nhưng đề hỏi là x^3 > 0 = .....
Nên ta chọn (x + 3) = 5 (tại nếu chọn x + 3 = -5 thì x sẽ < 0 dẫn đến x^3 < 0
Ta có x + 3 = 5
Từ đó có x = 8
Đến đây thì dễ dàng tính ra x^3 bằng mấy và thỏa mãn x > 0....
* ♥ * Xong! * ♫ *
* ♥ * nha! * ♫ *
C1: Lập bảng xét dấu tích:
x + 5/4 = 0 => x = -5/4
x - 19/7 = 0 => x = 19/7
Ta có:
x | -5/4 19/7 |
x + 5/4 | - 0 + / + |
x - 19/7 | - / - 0 + |
( x + 5/4 ) ( x - 19/7 ) | + 0 - 0 + |
Vậy -5/4 < x < 19/7
x:y=4:5
=>x/y=4/5
=>x/4=y/5
đặt x/4=y/5=k
ta có :x=4k
y=5k
=>x.y=4k.5k=20.k^2=5
=>k^2=1/4
=>k=1/2
=>x/4=1/2=>x=2
=>y/5=1/2=>y=5/2
a, => (x^2/y):(x/y) = 2:16
=> 1/y = 1/8 => y=8 ; x = 128
b, 1+2y/18 = 1+4y/24
<=> (1+2y).24 = (1+4y).18
<=> 24+48y = 18+72y
<=> 72y+18-24-48y=0
<=>24y-6=0
<=> 24y=6
<=> y=6:24 = 1/4
Khi đó : 1+2y/18 = 1+6y/6x
<=> 1+1/2/18 = 1+3/2 / 6x
<=> 1/12 = 5/12x
<=> 12x = 5: 1/12 = 60
<=> x = 60:12 = 5
Vậy .......
k mk nha
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{1}=\frac{z}{4}=\frac{x-y+z}{2-1+4}=\frac{3}{5}\)
Vậy y = 3/5
C, CHO 7X=3Y VA X -Y =16
=> \(\frac{x}{3}=\frac{y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)
=> \(\hept{\begin{cases}x=-4.3\\y=-4.7\end{cases}\Rightarrow\hept{\begin{cases}x=-12\\y=-28\end{cases}}}\)
bạn viết lại đề đi đè gì mà sai hết
\(A=\sqrt{\frac{x^2y^2}{x^2+y^2}+\frac{x^2y^2}{\left(x+y\right)^2}+\sqrt{\frac{\left(x^4+x^2y^2\right)^2+\left(y^4+x^2y^2\right)^2+x^4y^4}{\left(x^2+y^2\right)^2}}}\)
\(=\sqrt{\frac{x^2y^2}{x^2+y^2}+\frac{x^2y^2}{\left(x+y\right)^2}+\sqrt{\frac{\left(x^4+x^2y^2\right)^2+2x^4y^4+2x^2y^6+y^8}{\left(x^2+y^2\right)^2}}}\)
\(=\sqrt{\frac{x^2y^2}{x^2+y^2}+\frac{x^2y^2}{\left(x+y\right)^2}+\sqrt{\frac{\left(x^4+x^2y^2\right)^2+2\left(x^4+x^2y^2\right)y^4+y^8}{\left(x^2+y^2\right)^2}}}\)
\(=\sqrt{\frac{x^2y^2}{x^2+y^2}+\frac{x^2y^2}{\left(x+y\right)^2}+\sqrt{\frac{\left(x^4+x^2y^2+y^4\right)^2}{\left(x^2+y^2\right)^2}}}\)
\(=\sqrt{\frac{x^2y^2}{x^2+y^2}+\frac{x^2y^2}{\left(x+y\right)^2}+\frac{x^4+x^2y^2+y^4}{x^2+y^2}}\)
\(=\sqrt{\frac{x^2y^2}{\left(x+y\right)^2}+\frac{x^4+2x^2y^2+y^4}{x^2+y^2}}=\sqrt{\frac{x^2y^2}{\left(x+y\right)^2}+\frac{\left(x^2+y^2\right)^2}{x^2+y^2}}\)
\(=\sqrt{\frac{x^2y^2}{\left(x+y\right)^2}+x^2+y^2}=\sqrt{\frac{\left(x^2+xy\right)^2+\left(y^2+xy\right)^2+x^2y^2}{\left(x+y\right)^2}}\)
\(=\sqrt{\frac{\left(x^2+xy\right)^2+2x^2y^2+2xy^3+y^4}{\left(x+y\right)^2}}=\sqrt{\frac{\left(x^2+xy\right)^2+2\left(x^2+xy\right)y^2+y^4}{\left(x+y\right)^2}}\)
\(=\sqrt{\frac{\left(x^2+xy+y^2\right)^2}{\left(x+y\right)^2}}=\frac{x^2+xy+y^2}{x+y}\)