K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2021

180o em nhé]

8 tháng 10 2021

1800 em nhé

8 tháng 9 2021

undefined

8 tháng 9 2021

undefined

17 tháng 10 2021

1. Đ

2. S

3.Đ

bạn ơi còn 4,5,6 nx giúp mik vs

 

20 tháng 8 2023

Đề bài đâu b?

26 tháng 1 2022

những bài tự luận bạn đăng tầm 10 câu mỗi lần đăng thôi nhé, chứ dài quá ngại làm lắm

2 tháng 5 2023

Bài 6

a) (3x² + 5) + [(2x² - 5x) - (5x² + 4)]

= 3x² + 5 + (2x² - 5x - 5x² - 4)

= 3x² + 5 + 2x² - 5x - 5x² - 4

= (3x² + 2x² - 5x²) - 5x + (5 - 4)

= -5x + 1

---------‐----------

b) (x + 2)(x² - 2x + 4)

= x.x² - x.2x + x.4 + 2.x² - 2.2x + 2.4

= x³ - 2x² + 4x + 2x² - 4x + 8

= x³ + (-2x² + 2x²) + (4x - 4x) + 8

= x³ + 8

-------------------

c) (4x³ - 8x² + 13x - 5) : (2x - 1)

= (4x³ - 2x² - 6x² + 3x + 10x - 5) : (2x - 1)

= [(4x³ - 2x²) - (6x² - 3x) + (10x - 5)] : (2x - 1)

= [2x²(2x - 1) - 3x(2x - 1) + 5(2x - 1)] : (2x - 1)

= (2x - 1)(2x² - 3x + 5) : (2x - 1)

= 2x² - 3x + 5

2 tháng 5 2023
12 tháng 1 2020

A B C H D I

GT:AH vuông BC

      AD=AB

     DI vuông AH

KL:BH=ID

                                                    Bài làm

Ta có:

\(\widehat{A1}=\widehat{A2}\)(đối đỉnh)(1)

\(AB=AD\)(GT)(2)

\(\widehat{B}=180^0-90^0-\widehat{A1}\)

         \(\widehat{D}=180^0-90^0-\widehat{A2}\)

\(\widehat{A1}=\widehat{A2}\)

=>\(\widehat{B}=\widehat{D}\)(3)

Từ (1),(2),(3) suy ra:\(\Delta\)ABH=\(\Delta\)ADI(g-c-g)

=>BH=ID(hai cạnh tương ứng)

                      Vậy BH=ID

        

        

15 tháng 1 2020

Hk tot ^3^

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Lời giải:

a. Với $n$ nguyên khác -3, để $B$ nguyên thì:

$2n+9\vdots n+3$

$\Rightarrow 2(n+3)+3\vdots n+3$

$\Rightarrow 3\vdots n+3$

$\Rightarrow n+3\in\left\{\pm 1; \pm 3\right\}$

$\Rightarrow n\in\left\{-2; -4; 0; -6\right\}$

b. 

$B=\frac{2n+9}{n+3}=\frac{2(n+3)+3}{n+3}=2+\frac{3}{n+3}$

Để $B_{\max}$ thì $\frac{3}{n+3}$ max

Điều này đạt được khi $n+3$ là số nguyên dương nhỏ nhất

Tức là $n+3=1$

$\Leftrightarrow n=-2$

c. Để $B$ min thì $\frac{3}{n+3}$ min

Điều này đạt được khi $n+3$ là số nguyên âm lớn nhất 

Tức là $n+3=-1$

$\Leftrightarrow n=-4$