K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 6 2019

Câu 1:

\(f'\left(1\right)=g'\left(1\right)=k\)

\(h\left(x\right)=\frac{f\left(x\right)+2}{g\left(x\right)+1}\Rightarrow h'\left(x\right)=\frac{f'\left(x\right)\left[g\left(x\right)+1\right]-g'\left(x\right)\left[f\left(x\right)+2\right]}{\left[g\left(x\right)+1\right]^2}\)

\(\Rightarrow h'\left(1\right)=\frac{k\left(b+1\right)-k\left(a+2\right)}{\left(b+1\right)^2}=\frac{k\left(b-a-1\right)}{\left(b+1\right)^2}\)

\(h'\left(1\right)=k\Rightarrow k=\frac{k\left(b-a-1\right)}{\left(b+1\right)^2}\Rightarrow\frac{b-a-1}{\left(b+1\right)^2}=1\)

\(\Leftrightarrow b-a-1=\left(b+1\right)^2\Rightarrow a=b-1-\left(b+1\right)^2\)

\(\Rightarrow a=-b^2-b-2\)

NV
15 tháng 6 2019

Câu 2:

\(y=f\left(x\right)=\frac{x+1}{x-2}\Rightarrow f'\left(x\right)=\frac{-3}{\left(x-2\right)^2}\)

Phương trình hoành độ giao điểm:

\(\frac{x+1}{x-2}=x+m\Leftrightarrow x+1=\left(x+m\right)\left(x-2\right)\)

\(\Leftrightarrow x^2+\left(m-3\right)x-2m-1=0\)

\(\Delta=\left(m-3\right)^2+4\left(2m+1\right)=\left(m+1\right)^2+12>0\)

\(\Rightarrow\) d luôn cắt (P) tại 2 điểm phân biệt A và B có hoành độ giả sử là a và b

Theo Viet: \(\left\{{}\begin{matrix}a+b=3-m\\ab=-3m-1\end{matrix}\right.\) \(\Rightarrow3a+3b-ab=10\) (1)

Mặt khác do tiếp tuyến tại A và B song song

\(\Leftrightarrow\frac{-3}{\left(a-2\right)^2}=\frac{-3}{\left(b-2\right)^2}\Leftrightarrow\left[{}\begin{matrix}a-2=b-2\\a-2=2-b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=4-b\end{matrix}\right.\)

TH1: \(a=b\) thay vào (1):

\(\Rightarrow-a^2+6a-10=0\left(vn\right)\)

TH2: \(a=4-b\)

\(\Rightarrow a+b=4\Rightarrow3-m=4\Rightarrow m=-1\)

2 tháng 5 2018

Chọn A

7 tháng 5 2017

27 tháng 4 2022

1

21 tháng 4 2023

loading...  

20 tháng 6 2017

Chọn A

16 tháng 5 2021

\(f'\left(x\right)=3x^2-6x+1\Rightarrow f'\left(1\right)=-2\)

Phương trình tiếp tuyến tại điểm có hoành độ bằng 1 là:

\(\Delta:y=f'\left(1\right)\left(x-1\right)+f\left(1\right)\Rightarrow y=\left(-2\right)\left(x-1\right)-2\)

17 tháng 5 2021

Ta có y'=3x^2 - 6x +1 

gọi M(x0;y0) là tiếp điểm

Ta có x0 =1 do đó yo =1^3 -3.1^2+1-1=-2

y'(1)=3.1^2-6.1+1=-2

Vậy phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 1 là y=y'(1)(x-1)+(-2)=>y=-2x

AH
Akai Haruma
Giáo viên
16 tháng 4 2021

Lời giải:

Thay $x=0$ vào điều kiện đề thì $f(1)=0$ hoặc $f(1)=-1$ 

Đạo hàm 2 vế:

$4f(2x+1)f'(2x+1)_{2x+1}=1+3f(1-x)^2f'(1-x)_{1-x}$

Thay $x=0$ vô thì:

$4f(1)f'(1)=1+3f(1)^2f'(1)$

Nếu $f(1)=0$ thì hiển nhiên vô lý

Nếu $f(1)=-1$ thì: $-4f'(1)=1+3f'(1)\Rightarrow f'(1)=\frac{-1}{7}$

PTTT tại $x=1$ có dạng:

$y=f'(1)(x-1)+f(1)=\frac{-1}{7}(x-1)-1=\frac{-x}{7}-\frac{6}{7}$

 

 

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Đặt \(h\left( x \right) = f\left( x \right) + g\left( x \right) = \frac{1}{{x - 1}} + \sqrt {4 - x} \). Ta có:

\(\begin{array}{l}h\left( 2 \right) = \frac{1}{{2 - 1}} + \sqrt {4 - 2}  = 1 + \sqrt 2 \\\mathop {\lim }\limits_{x \to 2} h\left( x \right) = \mathop {\lim }\limits_{x \to x} \left( {\frac{1}{{x - 1}} + \sqrt {4 - x} } \right) = \frac{1}{{2 - 1}} + \sqrt {4 - 2}  = 1 + \sqrt 2 \end{array}\)

Vì \(\mathop {\lim }\limits_{x \to 2} h\left( x \right) = h\left( 2 \right)\) nên hàm số \(y = f\left( x \right) + g\left( x \right)\) liên tục tại \(x = 2\).

5 tháng 10 2018

15 tháng 9 2021

tại sao lại lớn hơn hoặc bằng 2 căn 2 ạ