CMR \(\left(a+b\right)\left(a-b\right)=a^2-b^2\left(\curlyvee a,b\right)\)
\(\left(a+b\right)^2=a^2+2ab+b^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\)
Chọn D.
\(=\left(a+b-c\right)\left(a-b\right)^2\) nha !
P/S:Ko có mục đích xấu,đăng lên cho bạn thôi.
biến đổi vế trái : a. \(\left(a+b\right)^2=a^2+2ab+B^2=VP\)
b. \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3=VP\)
c. \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=VP\)
xem 7 hằng đẳng thức đáng nhớ
a)\(=\left(a+b\right)^2=\left(a+b\right)\left(a+b\right)=a^2+ab+ab+b^2\)
\(=a^2+2ab+b^2\)
b)\(\left(a-b\right)^3=\left(a-b\right)\left(a-b\right)\left(a-b\right)=\left(a^2-ab-ab+b^2\right)\left(a-b\right)\)
\(=\left(a^2-2ab+b^2\right)\left(a-b\right)\)
\(=a^3-a^2b-2a^2b+2ab^2+ab^2-b^3\)
\(=a^3-3a^2b-3ab^2-b^3\)
c)\(\left(a+b+c\right)^2=\left(a+b+c\right)\left(a+b+c\right)\)
\(=a^2+ab+ac+ab+b^2+bc+ac+cb+c^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ac\)
a) Ta có : \(a^2+1=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)
Tương tự : \(b^2+1=\left(b+a\right)\left(b+c\right)\) ; \(c^2+1=\left(c+a\right)\left(c+b\right)\)
Suy ra \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)
Vậy \(A=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}=1\)
b) Ta có ; \(a^2+2bc-1=a^2+2bc-\left(ab+bc+ac\right)=a^2-ab+bc-ac=a\left(a-b\right)-c\left(a-b\right)\)
\(=\left(a-b\right)\left(a-c\right)\)
Tương tự : \(b^2+2ac-1=\left(a-b\right)\left(c-b\right)\) ; \(c^2+2ab-1=\left(a-c\right)\left(b-c\right)\)
Suy ra \(\left(a^2+2bc-1\right)\left(b^2+2ac-1\right)\left(c^2+2ab-1\right)=\left(a-b\right)^2.\left(c-a\right)^2.\left[-\left(b-c\right)^2\right]\)
Vậy : \(B=\frac{-\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)}=-1\)
Bình phương 2 vế em nhé, GTTĐ bình phương thì âm hay dương nó cx như nhau
\(\left|a+b\right|\le\left|a\right|+\left|b\right|\)
\(\Leftrightarrow\left(a+b\right)^2\le\left(\left|a\right|+\left|b\right|\right)^2\)
\(\Leftrightarrow a^2+2ab+b^2\le a^2+2\left|ab\right|+b^2\)
\(a,b)\)Ta có: \(\left(a\pm b\right)^2\)
\(=\left(a\pm b\right)\left(a\pm b\right)\)
\(=a^2\pm ab\pm ab+b^2\)
\(=a^2\pm ab+b^2\)
\(c)\)\(\left(a+b\right)\left(a-b\right)=a^2-ab+ab-b^2=a^2-b^2\)
+) \(\left(a+b\right)\left(a-b\right)=a\left(a-b\right)+b\left(a-b\right)=a^2-ab+ba-b^2=a^2-b^2\left(đpcm\right)\)
+) \(\left(a+b\right)^2=\left(a+b\right)\left(a+b\right)=a\left(a+b\right)+b\left(a+b\right)=a^2+ab+ba+b^2=a^2+2ab+b^2\left(đpcm\right)\)
Bài này chỉ đơn giản là nhân đa thức với đa thức
\(\left(a+b\right)\left(a-b\right)=a^2-ab+ab-b^2=a^2-b^2\)
\(\left(a+b\right)^2=\left(a+b\right)\left(a+b\right)=a^2+ab+ab+b^2=a^2+2ab+b^2\)