K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2019

       \(\sqrt{\frac{x-4}{2x+3}}=2\)

\(\Leftrightarrow\left(\sqrt{\frac{x-4}{2x+3}}\right)^2=2^2\)

\(\Leftrightarrow\frac{x-4}{2x+3}=4\)

\(\Leftrightarrow x-4=4\left(2x+3\right)\)

\(\Leftrightarrow x-4=8x+12\)

\(\Leftrightarrow x-8x=12+4\)

\(\Leftrightarrow-7x=16\)

\(\Leftrightarrow x=\frac{16}{-7}=\frac{-16}{7}\)

Vậy tập nghiệm của pt là \(S=\left\{-\frac{16}{7}\right\}\)

28 tháng 6 2023

\(ĐKXD:\left\{{}\begin{matrix}2x^2+5x-3\ge0\\2x-1\ge0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}2x^2+6x-x-3\ge0\\2x\ge1\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}2x\left(x+3\right)-\left(x+3\right)\ge0\\x\ge\dfrac{1}{2}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}\left(x+3\right)\left(2x-1\right)\ge0\\x\ge\dfrac{1}{2}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\2x-1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3\le0\\2x-1\le0\end{matrix}\right.\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-3\\x\ge\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-3\\x\le\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\dfrac{1}{2}\\x\le-3\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}x\le-3\\x\ge\dfrac{1}{2}\end{matrix}\right.\)

Câu 1: 

a: x+2=0

nên x=-2

b: (x-3)(2x+8)=0

=>x-3=0 hoặc 2x+8=0

=>x=3 hoặc x=-4

23 tháng 5 2022

a . 

x + 2 = 0

=> x = 0 - 2 = -2 

b ) .

<=> x - 3 = 0 ; 2x + 8 = 0

= > x = 3 ; x = -8/2 = -4 

c ) .

ĐKXĐ của pt : x - 5 khác 0 = > ddk : x khác 5

21 tháng 7 2021

ĐK: `{(3x+4>=0),(1+2x>=0),(x+3>=0):}<=> {(x>=-4/3),(x>=-1/2),(x>=-3):} <=> x>=-1/2`

7 tháng 6 2019

1) \(\frac{1}{\sqrt{2x-1}}\)có nghĩa khi \(\hept{\begin{cases}2x-1\ge0\\\sqrt{2x-1}\ne0\end{cases}}\)

\(\Leftrightarrow2x-1>0\)

\(\Leftrightarrow x>\frac{1}{2}\)

\(\sqrt{5-x}\)có nghĩa khi \(5-x\ge0\Leftrightarrow x\ge5\)

Vậy \(ĐKXĐ:\frac{1}{2}>x\ge5\)

2) \(\sqrt{x-\frac{1}{x}}\)có nghĩa khi \(\hept{\begin{cases}x-\frac{1}{x}\ge0\\x>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x^2}{x}-\frac{1}{x}\ge0\\x>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x^2-1}{x}\ge0\\x>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2-1\ge0\\x>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2\ge1\\x>0\end{cases}}\)

Vậy \(ĐKXĐ:x\ge1\)

3) \(\sqrt{2x-1}\)có nghĩa khi \(2x-1\ge0\) \(\Leftrightarrow x\ge\frac{1}{2}\)

\(\sqrt{4-x^2}\)có nghĩa khi \(4-x^2\ge0\Leftrightarrow x^2\le4\Leftrightarrow x\le2\)

Vậy \(ĐKXĐ:\frac{1}{2}\le x\le2\)

4) \(\sqrt{x^2-1}\)có nghĩa khi \(x^2-1\ge0\Leftrightarrow x^2\ge1\Leftrightarrow x\ge1\)

\(\sqrt{9-x^2}\)có nghĩa khi \(9-x^2\ge0\Leftrightarrow x^2\le9\Leftrightarrow x\le3\)

Vậy \(ĐKXĐ:1\le x\le3\)

9 tháng 2 2019

\(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)ĐKXĐ : \(x\ne\pm4\)

\(\Leftrightarrow\frac{5\left(x^2-16\right)}{x^2-16}+\frac{96}{x^2-16}=\frac{\left(2x-1\right)\left(x-4\right)}{x^2-16}+\frac{\left(3x-1\right)\left(x+4\right)}{x^2-16}\)

\(\Leftrightarrow5x^2-80+96=2x^2-9x+4+3x^2+11x-4\)

\(\Leftrightarrow5x^2-2x^2-3x^2-11x+9x=4-4+80-96\)

\(\Leftrightarrow-2x=-16\)

\(\Leftrightarrow x=8\)( t/m )

Vậy....

5 tháng 4 2020

\(\left\{{}\begin{matrix}2\sqrt{x-3}+\frac{12}{y-2x}=8\\3\sqrt{4x-12}+\frac{3}{2x-y}=\frac{9}{2}\end{matrix}\right.\) \(Đkxđ:\left\{{}\begin{matrix}x\ge3\\y\ne2x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-3}+\frac{12}{y-2x}=8\\6\sqrt{x-3}+\frac{3}{2x-y}=\frac{9}{2}\end{matrix}\right.\)

Đặt: \(\left\{{}\begin{matrix}2\sqrt{x-3}=a\left(a>0\right)\\\frac{3}{2x-y}=b\end{matrix}\right.\)

Ta được phương trình mới:

\(\left\{{}\begin{matrix}a-4b=8\\3a+b=\frac{9}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=\frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-3}=2\\\frac{3}{2x-y}=-\frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=1\\2x-y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=10\end{matrix}\right.\)

Vậy ..........