K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2019

\(D=ax^2+bx+c=a\left(x^2+\frac{b}{a}x\right)+c=a\left(x+\frac{b}{2a}\right)^2+c-\frac{b^2}{4a}\)

Đặt \(c-\frac{b^2}{4a}=k\). Do \(\left(x+\frac{b}{2a}\right)^2\ge0\)nên :

Nếu a < 0 thì \(a\left(x+\frac{b}{2a}\right)^2\le0\). Do đó \(D\le k\)

Max D = k khi và chỉ khi \(x=-\frac{b}{2a}\)

                              hk tốt

7 tháng 4 2019

\(P=ax^2+bx+c=a\left(x^2+\frac{b}{a}x\right)+c=a\left(x+\frac{b}{2a}\right)^2+c-\frac{b^2}{4a}\)

Đặt \(c-\frac{b^2}{4a}=k.\)Do \(\left(x+\frac{b}{2a}\right)^2\ge0\)nên:

- Nếu a > 0 thì \(a\left(x+\frac{b}{2a}\right)^2\ge0\). Do đó \(P\ge k\)

min P = k khi và chỉ khi \(x=-\frac{b}{2a}\)

- Nếu a < 0 thì \(a\left(x+\frac{b}{2a}\right)^2\le0\). Do đó \(P\le k\)

max P = k khi và chỉ khi \(x=-\frac{b}{2a}\)

8 tháng 6 2017

Xin phép

a)\(A=-x^2+6x-5=-x^2+6x-9+4\)

\(=-\left(x^2-6x+9\right)+4=-\left(x-3\right)^2+4\le4\)

Đẳng thức xảy ra khi \(x=3\)

b)\(B=-x^2-3x+4=-x^2-3x-\dfrac{9}{4}+\dfrac{25}{4}\)

\(=-\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{25}{4}=-\left(x+\dfrac{3}{2}\right)^2+\dfrac{25}{4}\ge\dfrac{25}{4}\)

Đẳng thức xảy ra khi \(x=-\dfrac{3}{2}\)

c)\(C=-3x^2+2x-1=-3\left(x^2+\dfrac{2x}{3}+\dfrac{1}{3}\right)\)

\(=-3\left(x^2-\dfrac{2x}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)=-3\left(x^2-\dfrac{2x}{3}+\dfrac{1}{9}\right)-\dfrac{2}{3}\)

\(=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{2}{3}\ge-\dfrac{2}{3}\)

Đẳng thức xảy ra khi \(x=\dfrac{1}{3}\)

d)\(D=ax^2+bx+c=\dfrac{\left(2ax+b\right)^2}{4a}-\dfrac{b^2-4ac}{4a}\le0\)(a<0,abc là hằng số)

8 tháng 6 2017

Nguyễn Huy TúQuang Duyshin cau be but chiTrần Hoàng Nghĩasoyeon_Tiểubàng giảiMỹ DuyênLê Thiên AnhTrần Quỳnh Maihồ quỳnh anhMới vôTrịnh Ánh Ngọc

NV
12 tháng 11 2021

Em tham khảo ở đây:

xét các số thực a,b,c (a≠0) sao cho phương trình ax2+bx+c=0 có 2 nghiệm m, n thỏa mãn \(0\le m\le1;0\le m\le1\). tìm GTN... - Hoc24

12 tháng 11 2021

vậy không có tìm GTLN hay sao ạ?

24 tháng 9 2021

\(y=ax^2+bx+c\left(d\right)\)

Do y có gtln là 5 khi x=-2 

\(\Rightarrow\left\{{}\begin{matrix}5=a\left(-2\right)^2+b\left(-2\right)+c\\-\dfrac{b}{2a}=-2\\a< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a-2b+c=5\\4a-b=0\end{matrix}\right.\)

Có \(M\in\left(d\right)\Rightarrow a+b+c=-1\)

Có hệ \(\left\{{}\begin{matrix}4a-2b+c=5\\4a+b=0\\a+b+c=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{-2}{3}\\b=-\dfrac{8}{3}\\c=\dfrac{7}{3}\end{matrix}\right.\)(tm)

Vậy...

9 tháng 6 2019

\(D=ax^2+bx+c\)

\(D=a\left(x^2+\frac{bx}{a}+\frac{c}{a}\right)\)

\(D=a\left(x^2+2\cdot x\cdot\frac{b}{2a}+\frac{b^2}{4a^2}+\frac{c}{a}-\frac{b^2}{4a^2}\right)\)

\(D=a\left[\left(x+\frac{b}{2a}\right)^2+\frac{4ca-b^2}{4a^2}\right]\)

\(D=a\left(x+\frac{b}{2a}\right)^2+\frac{4ca-b^2}{4a}\ge\frac{4ca-b^2}{4a}\forall x;a>0\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-b}{2a}\)

9 tháng 6 2019

Ta có \(x^2\ge0\)

\(\Rightarrow ax^2\ge0\left(a>0\right)\)

nên để \(ax^2\)nhỏ nhất thì \(x=0\)

Khi đó \(GTNN_D=a.0^2+b.0+c=c\)