K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2019

Áp dụng định lý Viet:

\(\left\{{}\begin{matrix}x_1+x_2=\frac{-4m+3}{2}\\x_1.x_2=\frac{1-2m}{2}\end{matrix}\right.\)

Có x1.x2 <0 theo đề bài nên \(\frac{1-2m}{2}\)<0 nên m>\(\frac{1}{2}\)

Có: (x1 - 1) (x2 - 1) = x1x2 -(x1+x2) +1 <0

Thay giá trị bên trên vào suy ra : m<0

=> \(\left[{}\begin{matrix}m< 0\\m>\frac{1}{2}\end{matrix}\right.\)

(Không biết đúng không)

NV
11 tháng 6 2019

Đặt \(f\left(x\right)=2x^2+\left(4m-3\right)x+1-2m=0\)

Do \(a=2>0\) , để pt có 2 nghiệm thỏa mãn \(x_1< 0< 1< x_2\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(0\right)< 0\\f\left(1\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1-2m< 0\\2+1.\left(4m-3\right)+1-2m< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-2m< 0\\2m< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>\frac{1}{2}\\m< 0\end{matrix}\right.\) \(\Rightarrow\) Không tồn tại m thỏa mãn

NV
11 tháng 9 2021

\(x^3-x^2+2mx-2m=0\)

\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)

Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)

a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\) 

Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)

Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m

\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu

b.

Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)

\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn

Em coi lại đề bài

16 tháng 2 2021

a, Phương trình có hai nghiệm trái dấu khi \(2\left(2m^2-3m-5\right)< 0\)

\(\Leftrightarrow\left(2m-5\right)\left(m+1\right)< 0\)

\(\Leftrightarrow-1< m< \dfrac{5}{2}\)

b, TH1: \(m^2-3m+2=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)

Phương trình đã cho có nghiệm duy nhất

TH2: \(m^2-3m+2\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\)

Phương trình có hai nghiệm trái dấu khi \(-5\left(m^2-3m+2\right)< 0\)

\(\Leftrightarrow m^2-3m+2>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\)

Vậy \(m>2\) hoặc \(m< 1\)

16 tháng 2 2021

c, Phương trình đã cho có hai nghiệm trái dấu \(x_1,x_2\) khi \(m^2-2m< 0\Leftrightarrow0< m< 2\)

Theo định lí Viet: \(x_1+x_2=2\left(m-1\right)\)

Yêu cầu bài toán thỏa mãn khi \(x_1+x_2< 0\Leftrightarrow2\left(m-1\right)< 0\Leftrightarrow m< 1\)

Vậy \(0< m< 1\)

30 tháng 7 2021

câu a 

Gọi xlà nghiệm chung của PT(1) và (2)

\(\Rightarrow\left\{{}\begin{matrix}2x^2_0+\left(3m-1\right)x_0-3=0\left(\times3\right)\\6.x^2_0-\left(2m-1\right)x_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x^2_0+3\left(3m-1\right)x_0-9=0\left(1\right)\\6x^2_0-\left(2m-1\right)x_0-1=0\left(2\right)\end{matrix}\right.\)  Lấy (1)-(2) ,ta được 

PT\(\Leftrightarrow3\left(3m-1\right)-9+\left(2m-1\right)+1\)=0

     \(\Leftrightarrow9m-3-9+2m-1+1=0\Leftrightarrow11m-12=0\)

      \(\Leftrightarrow m=\dfrac{12}{11}\)

 

 

a: \(\text{Δ}=\left(-4\right)^2-4\cdot2\cdot5\left(m-1\right)\)

\(=16-40\left(m-1\right)\)

\(=16-40m+40\)

=-40m+56

Để phương trình có hai nghiệm phân biệt nhỏ hơn 3 thì

\(\left\{{}\begin{matrix}-40m+56>0\\\dfrac{4}{2}< 6\end{matrix}\right.\Leftrightarrow-40m>-56\)

hay m<7/5

b: Để phương trình có hai nghiệm phân biệt lớn hơn 3 thì

\(\left\{{}\begin{matrix}-40m+56>0\\\dfrac{4}{2}>6\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

21 tháng 2 2023

2x^2  -(4m+3)x+2m^2-1=0

 

 a= 2

b = -(4m+3)

 c= 2m^2-1

Ta có: ∆=b^2-4ac

              = 〖(4m+3)〗^2-4.2.(2m^2-1)

              = 16m^2+24m+9-16m^2+8   

               = 24m +17

Để phương trình có 2 nghiệm phân biệt

=> ∆> 0 =>24m +17>0=> 24m > - 17=>m> (-17)/24

Vậy để pt có 2 nghiệm phân biệt thì m > (-17)/24

https://www.youtube.com/watch?v=toNMfaR7_Ns

 

 

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

29 tháng 12 2020

Đặt x2 + 2x + 4 = t . Điều kiện : t ≥ 3 

Phương trình đã cho trở thành t2 - 2mt - 1 = 0 (1)

(1) là phương trình hoành độ giao điểm của đồ thị hàm số y = t2 - 2mt - 1 với trục Ox (tức đường thẳng y = 0). Yêu cầu bài toán thỏa mãn khi (1) có 2 nghiệm phân biệt t thỏa mãn t ≥ 3 

Ta có bảng biến thiên của hàm số y = t2 - 2mt - 1 

t f(t) +∞ +∞ -∞ +∞ m -m - 1 2 3 y = 0 3 y = 0 8-6m 8-6m Nếu m > 3 thì yêu cầu bài toán thỏa mãn khi 

8 - 6m ≥ 0 ⇔ m ≤ \(\dfrac{4}{3}\) (không thỏa mãn m > 3)

Nếu m < 3, yêu cầu bài toán thỏa mãn khi 

8 - 6t ≤ 0 ⇔ m ≥ \(\dfrac{4}{3}\) Vậy m ∈ \(\)[\(\dfrac{4}{3};3\))

Nếu m = 3 thì phương trình trở thành 

t2 - 6t - 1 = 0 có 2 nghiệm thỏa mãn \(\left\{{}\begin{matrix}t_1+t_2=6\\t_1.t_2=-1\end{matrix}\right.\)

tức phương trình có 2 nghiệm trái dấu (không thỏa mãn điều kiện 2 nghiệm t ≥ 3) nên m = 3 không thỏa mãn yêu cầu bài toán 

Vậy tập hợp các giá trị m thỏa mãn yêu cầu bài toán là M = \(\left\{m\in R;\dfrac{4}{3}\le m< 3\right\}\)